Turbulent cascade in the solar wind on ion scales Prelude: Compressible Kármán-Howart-Monin law

> Petr Hellinger¹, Andrea Verdini², Simone Landi², Luca Franci³, Emanuele Papini², and Lorenzo Matteini⁴

> > ¹Astronomical Institute, CAS, Prague, Czech Republic
> > ² Università di Firenze, Italy
> > ³ Queen Mary University of London, UK
> > ⁴ Imperial College, London, UK

EGU2020-8738, EGU 2020

Turbulence in the solar wind

Solar wind

- large-amplitude turbulent fluctuations
- energy cascade
- transition on ion scales
 - onset of Hall cascade (Hellinger et al., 2018; Bandyopadhyay et al., 2020)?
 - ion energization (Yang et al., 2019)?
 - increase of compressibility (Andrés et al., 2019)?
- ⇒ compressible Kármán-Howart-Monin (KHM) approach

The approach of Galtier and Banerjee (2011), ..., Andrés et al. (2018) includes the isothermal internal energy. This is in many respects problematic.

Here we investigate KHM and coarse-graining approaches in compressible HD for the kinetic energy.

We also show preliminary results for the KHM equation in compressible Hall MHD turbulence.

Statistical Approach – Structure Functions

Statistically homogeneous, incompressible turbulence (de Karman and Howarth, 1938; Kolmogorov, 1941; Monin and Yaglom, 1975; Frisch, 1995)

$$\underbrace{\frac{\partial S^{(i)}}{\partial t}}_{\text{decay}} + \underbrace{\nabla_{I} \cdot \mathbf{Y}^{(i)}}_{\text{cascade}} = \underbrace{2\nu\Delta_{I}S^{(i)}}_{\text{dissipation}} - \underbrace{4\epsilon}_{\text{dissip. rate}}$$
(1)
$$\delta \boldsymbol{u} = \boldsymbol{u}(\boldsymbol{x} + \boldsymbol{I}) - \boldsymbol{u}(\boldsymbol{x}) \quad S^{(i)} = \langle |\delta \boldsymbol{u}|^{2} \rangle \quad \mathbf{Y}^{(i)} = \langle \delta \boldsymbol{u} |\delta \boldsymbol{u}|^{2} \rangle \quad \epsilon = \nu \langle \nabla \boldsymbol{u} : \nabla \boldsymbol{u} \rangle$$

Inertial range: $\nabla_I \cdot \mathbf{Y}^{(i)} = -4\epsilon$, i.e., cascade rate = dissipation rate "Exact law" (Re $\rightarrow \infty$, isotropic medium)

$$\left< \delta u_l | \delta \boldsymbol{u} |^2 \right> = -\frac{4}{3} \epsilon l$$

Compressible HD

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0, \tag{2}$$

$$\frac{\partial(\rho \boldsymbol{u})}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla \boldsymbol{p} + \nabla \cdot \boldsymbol{\tau}, \tag{3}$$

$$\frac{\partial t}{\partial t} + \mathbf{v} \cdot (p \mathbf{u} \mathbf{u}) = -\mathbf{v} p + \mathbf{v} \cdot t, \tag{3}$$

$$\frac{\partial T}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})T = \alpha \Delta T + (\gamma - 1)\frac{1}{\rho}(-\rho\theta + \boldsymbol{\Sigma}:\tau)$$
(4)

viscous stress tensor:
$$\tau = \mu \left(\mathbf{\Sigma} + \mathbf{\Sigma}^t - \frac{2}{3} I \theta \right)$$

dilatation: $\theta = \nabla \cdot \boldsymbol{u}$

stress tensor: $\boldsymbol{\Sigma} = \nabla \boldsymbol{u}$

Compressible KHM for the kinetic energy

Structure-function energy conservation equation (Hellinger et al., 2020):

$$\underbrace{\frac{\partial S}{\partial t}}_{\text{decay}} + \underbrace{\nabla_{I} \cdot \mathbf{Y} + R}_{\text{cascade}} = \underbrace{C_{p} - C_{\tau}}_{\text{corrections}} + \underbrace{2\langle \delta p \delta \theta \rangle}_{\text{pressure dilatation}} - \underbrace{2\langle \delta \tau : \delta \Sigma \rangle}_{\text{dissipation}}, \tag{5}$$

$$\mathbf{S} = \langle \delta \mathbf{u} \cdot \delta (\rho \mathbf{u}) \rangle \quad \mathbf{Y} = \langle \delta \mathbf{u} \left[\delta (\rho \mathbf{u}) \cdot \delta \mathbf{u} \right] \rangle \quad \mathbf{R} = \langle \delta \mathbf{u} \cdot (\theta' \rho \mathbf{u} - \theta \rho' \mathbf{u}') \rangle$$

S and **Y** are compressible equivalents of $S^{(i)}$ and $\mathbf{Y}^{(i)}$.

R represents an additional, compressible energy transfer.

$$m{C}_{m{
ho}} = C\left[m{u},
abla m{
ho}
ight] \quad m{C}_{ au} = C\left[m{u},
abla \cdot m{ au}
ight] \quad C\left[m{a}, m{b}
ight] = \left(rac{
ho'}{
ho} - 1
ight)m{a}'\cdotm{b} + \left(rac{
ho}{
ho'} - 1
ight)m{a}\cdotm{b}'$$

Coarse-graining approach

Filtered energy conservation in compressible HD (Eyink and Aluie, 2009; Aluie, 2011, 2013)

$$\underbrace{\frac{\partial \langle \mathcal{E}_{\ell} \rangle}{\partial t}}_{\text{decay}} + \underbrace{\langle \Pi_{\ell} + \Lambda_{\ell} \rangle}_{\text{cascade}} - \underbrace{\langle \overline{p}_{\ell} \nabla \cdot \overline{\boldsymbol{u}}_{\ell} \rangle}_{\text{pressure dilatation}} + \underbrace{\langle D_{\ell} \rangle}_{\text{dissipation}} = 0$$
(6)
$$\mathcal{E}_{\ell} = \frac{1}{2} \overline{\rho}_{\ell} |\tilde{\boldsymbol{u}}_{\ell}|^{2} \quad \Pi_{\ell} = -\overline{\rho}_{\ell} \nabla \tilde{\boldsymbol{u}}_{\ell} : (\widetilde{\boldsymbol{u}} \widetilde{\boldsymbol{u}}_{\ell} - \widetilde{\boldsymbol{u}}_{\ell} \widetilde{\boldsymbol{u}}_{\ell}) \quad \Lambda_{\ell} = (\widetilde{\boldsymbol{u}}_{\ell} - \overline{\boldsymbol{u}}_{\ell}) \cdot \nabla \overline{\rho}_{\ell}$$
$$D_{\ell} = \nabla \tilde{\boldsymbol{u}}_{\ell} : \overline{\tau}_{\ell} \quad \overline{a}_{\ell}(\boldsymbol{x}) = \int_{V} G_{\ell}(\boldsymbol{r}) a(\boldsymbol{x} + \boldsymbol{r}) d^{3} \boldsymbol{r} \quad \tilde{a}_{\ell}(\boldsymbol{x}) = \frac{\overline{\rho} \overline{a}_{\ell}(\boldsymbol{x})}{\overline{\rho}_{\ell}(\boldsymbol{x})}$$

Incompressible version of Eq. (6) (cf., Eyink and Aluie, 2009)

$$\underbrace{\frac{\partial \langle \mathcal{E}_{\ell}^{(i)} \rangle}{\partial t}}_{\text{decay}} + \underbrace{\langle \Pi_{\ell}^{(i)} \rangle}_{\text{cascade}} + \underbrace{\langle D_{\ell}^{(i)} \rangle}_{\text{dissipation}} = 0$$

$$\mathcal{E}_{\ell}^{(i)} = \frac{1}{2} \rho_{0} |\overline{\boldsymbol{u}}_{\ell}|^{2} \quad \Pi_{\ell}^{(i)} = -\rho_{0} \nabla \overline{\boldsymbol{u}}_{\ell} : (\overline{\boldsymbol{u}} \overline{\boldsymbol{u}}_{\ell} - \overline{\boldsymbol{u}}_{\ell} \overline{\boldsymbol{u}}_{\ell}) \quad D_{\ell}^{(i)} = \mu \nabla \overline{\boldsymbol{u}}_{\ell} : \nabla \overline{\boldsymbol{u}}_{\ell}$$

3D compressible decaying HD simulation

3D compressible HD simulation – Coarse graining

Following Galtier and Banerjee (2011) one can take $\langle \delta \rho \delta e \rangle$ to represent the internal energy. From Eq. temperature one gets (Hellinger et al., 2020)

$$\frac{\partial S_{e}}{\partial t} + \nabla_{I} \cdot \mathbf{Y}_{e} + R_{e} = \alpha \left\langle \delta \rho \delta \left(\Delta e \right) \right\rangle - \mathcal{D} \left(\rho \theta \right) + \mathcal{D} \left(\tau : \mathbf{\Sigma} \right), \tag{8}$$

where

$$\boldsymbol{e} = \boldsymbol{T}/(\gamma - 1) \ \boldsymbol{S}_{\boldsymbol{e}} = \langle \delta \rho \delta \boldsymbol{e} \rangle \ \boldsymbol{Y}_{\boldsymbol{e}} = \langle \delta \boldsymbol{u} \delta \rho \delta \boldsymbol{e} \rangle \ \boldsymbol{R}_{\boldsymbol{e}} = \langle \delta \boldsymbol{e} \rho \boldsymbol{\nabla}' \cdot \boldsymbol{u}' - \rho' \delta \boldsymbol{e} \boldsymbol{\nabla} \cdot \boldsymbol{u} \rangle$$

3D compressible HD simulation – internal energy

00

Solar wind turbulence

Incompressible Hall-MHD (Politano and Pouquet, 1998; Galtier, 2008; Hellinger et al., 2018; Ferrand et al., 2019)

$$\begin{split} \underbrace{\frac{\partial S^{(i)}}{\partial t}}_{\text{decay}} + \underbrace{\nabla \cdot \mathbf{Y}^{(i)}}_{\text{MHD cascade}} + \underbrace{\nabla \cdot \mathbf{H}^{(i)}}_{\text{Hall cascade}} = \underbrace{D^{(i)}}_{\text{dissipation}} \\ S^{(i)} = S_{b}^{(i)} + S_{u}^{(i)} \quad S_{u}^{(i)} = \langle |\delta \mathbf{u}|^{2} \rangle \quad S_{b} = \langle |\delta \mathbf{b}|^{2} \rangle \\ \mathbf{Y}^{(i)} = \langle \delta \mathbf{u} |\delta \mathbf{u}|^{2} + \delta \mathbf{u} |\delta \mathbf{b}|^{2} - 2\delta \mathbf{b} (\delta \mathbf{u} \cdot \delta \mathbf{b}) \rangle \\ \mathbf{H}^{(i)} = \langle \delta \mathbf{b} (\delta \mathbf{b} \cdot \delta \mathbf{j}) - \frac{1}{2} \delta \mathbf{j} |\delta \mathbf{b}|^{2} \rangle \\ D^{(i)} = 2\nu\Delta S_{u}^{(i)} + 2\eta\Delta S_{b}^{(i)} - 4\epsilon \end{split}$$

$$\epsilon = \nu \langle \nabla \boldsymbol{u} : \nabla \boldsymbol{u} \rangle + \eta \langle \nabla \boldsymbol{b} : \nabla \boldsymbol{b} \rangle \quad \boldsymbol{b} = \boldsymbol{B} / \sqrt{\mu_0 \rho} \quad \boldsymbol{j} = \boldsymbol{u}_{\rho} - \boldsymbol{u}_{\epsilon}$$

2D Hall-MHD simulation vs incompressible KHM equation

- \boldsymbol{B}_0 along z
- *x-y* grid 2048²
- $\Delta x = \Delta y = d_i/8$
- size 256²d_i²
- Alfvénic fluctuations $\delta B_{rms}/B_0 = 0.17$ for $kd_i < 0.2$
- zero cross-helicity
- *β* = 0.5
- $\eta = \nu = 10^{-3}$

2D Hall-MHD simulation vs compressible KHM equation

- \boldsymbol{B}_0 along z
- *x-y* grid 2048²
- $\Delta x = \Delta y = d_i/8$
- size 256²d_i²
- Alfvénic fluctuations $\delta B_{rms}/B_0 = 0.17$ for $kd_i < 0.2$
- zero cross-helicity
- *β* = 0.5
- $\eta = \nu = 10^{-3}$

Summary

Compressible HD:

- Energy conservation Eqs. (5,6) well satisfied in the simulation
- Possible inertial range "exact laws"

$$abla_{I} \cdot \mathbf{Y} + R = -4Q_{\mu}$$
 or $\langle \Pi_{\ell} + \Lambda_{\ell} \rangle = -\frac{1}{2} \frac{\partial \langle \rho | \boldsymbol{u} |^{2} \rangle}{\partial t}$

 \Rightarrow estimation of heating/cascade rate

• S_e decreases wheareas ρe increases in the simulation $\Rightarrow S_e$ does not represent well the internal energy. Inclusion of S_e (\mathbf{Y}_e) to the KHM equation is questionable.

Compressible Hall MHD:

• Compressible Hall MHD KHM equation is better conserved (compared to the incompressible one) in a weakly compressible simulation.

References I

- Aluie, H. (2011). Phys. Rev. Lett., 106:174502.
- Aluie, H. (2013). Physica D, 247:54-65.
- Andrés, N., Galtier, S., and Sahraoui, F. (2018). Phys. Rev. E, 97:013204.
- Andrés, N., Sahraoui, F., Galtier, S., Hadid, L. Z., Ferrand, R., and Huang, S. Y. (2019). *Phys. Rev. Lett.*, 123:245101.
- Bandyopadhyay, R., Sorriso-Valvo, L., Chasapis, A., Hellinger, P., Matthaeus, W. H., Verdini, A., Landi, S., Franci, L., Matteini, L., Giles, B. L., Gershman, D. J., Pollock, C. J., Russell, C. T., Strangeway, R. J., Torbert, R. B., Moore, T. E., and Burch, J. L. (2020). *Phys. Rev. Lett.*, arXiv:1907.06802.
- de Karman, T. and Howarth, L. (1938). Proc. Royal Soc. London Series A, 164:192–215.
- Eyink, G. L. and Aluie, H. (2009). Phys. Fluids, 21:115107.
- Ferrand, R., Galtier, S., Sahraoui, F., Meyrand, R., Andrés, N., and Banerjee, S. (2019). Astrophys. J., 881:50.
- Frisch, U. (1995). Turbulence. Cambridge University Press.
- Galtier, S. (2008). Phys. Rev. E, 77:015302.
- Galtier, S. and Banerjee, S. (2011). Phys. Rev. Lett., 107:134501.
- Hellinger, P., Verdini, A., Landi, S., Franci, L., and Matteini, L. (2018). Astrophys. J. Lett., 857:L19.
- Hellinger, P., Verdini, A., Landi, S., Franci, L., Papini, E., and Matteini, L. (2020). J. Fluid Mech., arXiv:2004.02726.

References II

Kolmogorov, A. N. (1941). Akademiia Nauk SSSR Doklady, 32:16.

Monin, A. S. and Yaglom, A. M. (1975). *Statistical fluid mechanics: Mechanics of turbulence*. MIT Press, Cambridge, MA, USA.

Politano, H. and Pouquet, A. (1998). Phys. Rev. E, 57:R21-R24.

Yang, Y., Wan, M., Matthaeus, W. H., Sorriso-Valvo, L., Parashar, T. N., Lu, Q., Shi, Y., and Chen, S. (2019). Mon. Not. R. Astron. Soc., 482:4933–4940.

