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Sociletal Vulnerabilities to Sea Level Rise

~1 m SLR in 2100, with no coastal protection:

e ~1 million people per year permanent forced migration

e 100-500 million people per year temporary displacements
e ~$50 trillion per year damages

 Destruction of coastal communities, small island states
 Loss of wetland ecosystems

With coastal protection:

« $20-70 billion per year spent on protection

« ~100k people per year peak forced migration

» 10's of k people per year persistent forced migration

Nicholls et al., 2008; Hinkel et al., 2014; Jevrejeva et al., 2016
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Potential for Ice Sheet Collapse: Theory

1. The Marine Ice Sheet Instability (MISI) has a long history in the
glaciological literature (e.g. Hughes, 1973; Weertman, 1974,
Thomas and Bentley, 1978; Schoof, 2007).

2. Some factors are known to protect against MISI, such as
lateral buttressing from a confined shelf and central trough
(Gudmundsson et al., 2012) or gravitational and isostatic effects
(Gomez et al., 2010). However, Thwaites (the most at-risk
glacier) does not have a deep stabilizing trough or a well-
confined shelf.

3. During a collapse, the probability distribution of sea level rise
becomes both broader (ie, more uncertain) and skewed
towards higher values (Robel et al., 2019). Small perturbations
early in the retreat become amplified by the instability into large
differences in ice sheet geometry later in the collapse, creating

a “long tail” of dangerously rapid sea level rise that cannot be
ruled out.
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Potential for Ice Sheet Collapse: Theory

In other words,
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...which leads to serious societal
risks that cannot be ignored
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Potential for Ice Sheet Collapse: Models
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Note: all of these models predict SLR rates of

at least 1 m/century between 2100 and 2400

Winkelmann et al., 2015:; Golledge et al., 2015; DeConto and Pollard, 2016
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Potential for Ice Sheet Collapse: Present Situation

| nature
climate change

LETTERS

PUBLISHED ONLINE: 12 JANUARY 2004 | DO 10,105 /HCLIMATEZO2

Retreat of Pine Island Glacier controlled by marine

ice-sheet instability Widespread, rapid grounding line retreat of Pine Island,
L. Favier'2, G. Durand'2*, S, L. Cornford®, G. H. Gudmundsson®, 0. Gagliardini'2, Thwaites, Smith, and Kohler glaciers, West Antarctica,
F. Gillet-Chaulet"?, T. Zwinger’, A. 1. Payne? and A. M. Le Brocg® from 1992 to 2011

E. Rignot'Z, J. Mouginot', M. Morlighem', H. Seroussi?, and B. Scheuchl’

' Department of Earth System Science, University of California, Irvine; Califomia, USA, 2Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, California, USA

Marine Ice Sheet Collapse Potentially
Underway for the Thwaites Glacier
Basin, West Antarctica

lan Joughin,* Benjamin E. Smith, Brooke Medley

Polar Science Center, Applied Physics Lab, University of Washington, 1013 NE 40th Street, Seatile, WA
98105-6698,USA,

“Comesponding author, E-mail: ianf@apl. washington.edu

« Amundsen sector is presently retreating and losing mass
« Thwaites glacier is severely overdeepened with little lateral
buttressing
« Multiple plausible papers in the literature suggest that collapse has
already begun
« Even if we don't know for sure that a collapse is underway, the
lausible risk is enough to justify contingency plannin
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Potential Solution: Targeted Intervention?

a) Initial Conditions b) Marine Ice Sheet Instability

Surface Lowering
(volume loss)
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—  Retreat
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Tipping
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c) Artificial Sill Built
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Blocked

Our first idea was for an artificial sill that would both block
warm water and provide buttressing to the ice shelf

Wolovick and Moore, 2018
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a) Change in Volume Above Flotation

Example Model Results
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A reduction in basal melt rate during retreat leads to an enlargement of the ice
shelf, regrounding, buttressing, and thus a slowdown or reversal in the retreat

Wolovick and Moore, 2018
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Effectiveness Summary

Sill Performance
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Dynamic factors favoring a successful intervention:
1. Buttressing (high bathymetry to reground on)
2. Water blocking (melt reduction)

Wolovick and Moore, 2018
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Thin Metal Barriers

Low temperature and salinity Low salinity flow
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« Others compared earthen dams (sills) with thin metal barriers for water
blocking, and found that thin barriers are much cheaper.

* Thin barriers are also more easily removable in the event of
unforeseen consequences.

» Both sills and thin barriers must still address iceberg impacts.

* Those results inspired our next design iteration...

Hunt and Byers, 2018
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Seabed Anchored Curtains

a) Profile View b) Front View c) Detail View

Connector Buoyancy
Back panel panels element

Key Features:

1) Flexible buoyant curtains anchored to the seabed, terminate in the thermocline

2) Equilibrium lean angle determined by balance between curtain buoyancy and
ocean pressure difference

3) Flexible curtain hinges freely to allow it to accommodate iceberg impacts

4) Pleated geometry (b) allows for extra curtain area and increased deformation
during iceberg encounters (with other configurations being considered)

5) Small-scale structure (c) includes buoyancy elements, structural cables, and
durable tensile fabric (ex: PTFE coated glass cloth)

6) Structural loads (and therefore most components of the cost) scale with H?
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Potential Route at llulissat Mouth
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Bathymetry from Bedmachine v3 (Morlighem et al., 2014, and updates)
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. Motivation

Potential Route at llulissat Mouth
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Bathymetric profile extracted along the path in the previous slide, with

three potential curtain levels shown
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Potential Route at llulissat Mouth
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Curtain cost function defined as the integral of H* along the route of the curtain, because
structural loads scale with H*. Actual costs require far more analysis to estimate.
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Model Description

a) Fjord

b) Exchange Fow

Exchange flow determined by:
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Example Model Results: Sill Exchange

No Barrier
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Example Model Results: Fjord, Glacier Response

No Barrier Barrier Top @ 175m
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Model Results: Barrier Effectiveness

a) Cliff-Face Melt
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» Both deep and shallow layers of fjord get colder (should reduce iceberg
melt and increase melange buttressing).

* These results show a rigid barrier; experiments with hinged barriers
show broadly similar patterns.
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Estimating Barrier Cost-Effectiveness from Model

Melt Reduction (%)

We estimate the shape of the
cost-effectiveness curve by
combining model estimates of
melt reduction with the SAC cost

1 function estimated earlier.
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« Small curtains can achieve modest melt reductions (relatively) cheaply
e Diminishing marginal returns set in for larger curtains
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Conclusions from Simple Fjord Model

1. Blocking the deeper layers over the sill forces the exchange
flow to move higher in the water column, drawing in colder
waters than before.

2. The deep fjord basin can get colder but is unlikely to
become staghant so long as the buoyant plume at the ice
face continues to entrain and upwell deep water.

3. Substantial fjord coolings and associated melt reductions
are feasible, although the exact numbers depend strongly on
the forcings applied (especially the vertical temperature
gradient at the sill).

4. The ice dynamic response to the SAC will depend on the
connection between calving and melt (if any) and on any
changes in melange buttressing in response to colder fjord
temperatures.



1. Motivation 2. Previous Work 3. SAC Design 4. Fjord Model 5. Discussion
Potential Curtain Routes at Thwaites
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 Existing high points provide the
buttressing, no artificial sill required

« SAC could block deep warm water
at a handful of narrow canyons, no
need to block the whole glacier
width

Hogan et al., 2020 (in review, TC Discussion)
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Overall Conclusions

1. SAC provide a cheaper, less environmentally damaging,
and more easily reversible way to block deep warm water
than artificial sills.

2. Using SAC for water blocking means that we must rely on
natural pinning points or confining fjords to produce
buttressing.

3. SAC effectiveness is strongly related to the ocean
temperature gradient at the blocking location.

4. Implementation would require detailed site investigations,
numerical modeling and tank testing, engineering design
and costing, risk analysis and environmental impact studies,
and small-scale pilot projects. |E, not any time soon...

5. ...but given the societal consequences of ice sheet
collapse, and the long-tailed distribution of collapse speed,
the glaciological community would be remiss not to develop
contingency plans should the need arise.
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