Quasi-three-dimensional simulation of crescent-shaped waves

A. Dosaev, Yu. Troitskaya

dosaev@appl.sci-nnov.ru

Institute of Applied Physics of the Russian Academy of Sciences

Modeling potential deep water waves

To integrate the governing equations

$$\begin{array}{rcl} \eta_t + \eta_x \varphi_x + \eta_q \varphi_q - \varphi_y & = & 0, \\ \\ \varphi_t + g \eta + \frac{1}{2} |\nabla \varphi|^2 & = & 0 \quad (\text{at } y = \eta), \\ \\ \Delta \varphi & = & 0, \\ |\nabla \varphi| \to 0 & \text{as} & y \to -\infty. \end{array}$$

we need to compute $\nabla \varphi$ on the free surface from a known distribution of φ .

- For 2D flows $(\partial/\partial q=0)$ powerful techniques based on conformal mapping were developed. The free surface is mapped onto a straight line via a conformal transform x+iy=Z(u+iv,t), and derivatives of the "complex potential" $\Psi(u)=\varphi(u)+i\psi(u)=(1+i\hat{H})\varphi(u)$ are then easily computed.
- ▶ If one extends this conformal mapping approach to 3D flows, i.e.

$$x+iy=Z(u+iv,\boxed{q,}t),$$

while keeping only first order 3D corrections to the exact 2D governing equations (in a small parameter $\epsilon=(I_x/I_q)^2\ll 1$, changes along the q-axis are assumed to be slow)...

...What 3D effects would such a model retain?

Quasi-three-dimensional wave model

Equations of motion can be derived from the principle of least action with the Hamiltonian

$$\mathcal{H}=rac{\mathsf{g}}{2}\int\eta^2\;d\mathsf{x}\;d\mathsf{q}+\mathcal{K}.$$

However, in a 3D problem a compact expression for the kinetic energy functional $\mathcal K$ in terms of Z and Ψ is not known.

► Exact 2D + first order 3D corrections (*Ruban, 2005*):

$$\mathcal{K} = \frac{1}{2} \int \text{d} x \ \text{d} q \int_{-\infty}^{\eta} (\varphi_x^2 + \varphi_q^2 + \varphi_y^2) \ \text{d} y = -\frac{1}{2} \int \varphi \hat{H} \varphi_u \ \text{d} u \ \text{d} q + \mathcal{F}$$

where

$$\mathcal{F} = \frac{i}{8} \int (Z_u \Psi_q - Z_q \Psi_u) \hat{G} \overline{(Z_u \Psi_q - Z_q \Psi_u)} du dq +$$

$$+ \frac{i}{16} \int \left\{ \left[(Z_u \Psi_q - Z_q \Psi_u)^2 / Z_u \right] \hat{E} \overline{(Z - u)} - (Z - u) \hat{E} \overline{\left[(Z_u \Psi_q - Z_q \Psi_u)^2 / Z_u \right]} \right\} du dq.$$

Regularization (Ruban, 2010) restores correct linear dispersion relation on a whole wavenumber plane:

$$G(k,m) = \frac{-2i}{\sqrt{m^2 + k^2 + |k|}}, \qquad E(k,m) = \frac{2|k|}{\sqrt{m^2 + k^2 + |k|}},$$

where k, m are wavenumbers in the x and q directions.

Crescent-shaped waves

- ▶ Formation of crescent-shaped waves is an essentially 3D effect (Su, 1982) originating from an instability of Stokes wave to three-dimensional perturbations (McLean, 1982).
- ▶ If we actually run a simulation, we also observe a fast growth of another instability giving rise to perpendicular ripples:

That spurious instability only manifests itself for the regularized model and is caused by cubic terms in \mathcal{H} :

$$\frac{i}{16}\int\left\{\Psi_q^2\hat{E}\overline{(Z-u)}-(Z-u)\hat{E}\overline{\Psi_q^2}\right\}\ du\ dq.$$

Zones of instability of Stokes wave

The spurious instability can be mitigated by masking the problematic terms in the neighbourhood of the q-axis:

$$\frac{[(Z_u\Psi_q - Z_q\Psi_u)^2/Z_u] \ \hat{E}(\overline{Z-u})}{(Z-u) \ \hat{E}[(\overline{Z_u\Psi_q - Z_q\Psi_u})^2/Z_u]} \ \rightarrow \ \frac{[(\hat{M}(Z_u\Psi_q - Z_q\Psi_u))^2/Z_u] \ \hat{E}(\overline{Z-u})}{(Z-u) \ \hat{E}[(\hat{M}(Z_u\Psi_q - Z_q\Psi_u))^2/Z_u]}$$

where

$$M(k,m)=1-\left|\frac{m}{\sqrt{k^2+m^2}}\right|^p.$$

original model

Crescent-shaped waves

The modified quasi-three-dimensional model exhibits a plausible dynamics leading to formation of crescent-shaped waves:

Increment of instability

Maximum increments of instability for the zone correspoding to 5-wave interactions (solid line) are reasonably close to the values from an exact 3D analysis (white markers, *McLean*, *1982*):

