



# MONITORING OF SNOWPACK DYNAMICS WITH COSMIC-RAY NEUTRON SENSING: A COMPARISON OF FOUR CONVERSION METHODS

Heye Bogena<sup>1</sup>, Frank Herrmann<sup>1</sup>, Jannis Jakobi<sup>1</sup>, Cosimo Brogi<sup>1</sup>, Andreas Ilias<sup>2</sup>, Johan Alexander Huisman<sup>1</sup>, Andreas Panagopoulos<sup>2</sup> and Vassilios Pisinaras<sup>2</sup>

<sup>1</sup>Jülich Research Centre, Helmholtz Association of German Research Centers (HZ), Germany

<sup>2</sup>Hellenic Agricultural Organization "DEMETER", Institute of Soil and Water Resources (ISWR), Greece



# COSMIC-RAY NEUTRON INTENSITY IS AFFECTED BY SNOW COVER

- A) No snow cover: Many neutrons produced in ground escape to atmosphere
- B) Shallow snow cover: Some neutrons are blocked by the snow pack
- C) Thick snow cover: Nearly all are blocked by the snow pack



Desilets, 2017





#### **TESTED CONVERSION METHODS**

- linear regression (fast neutrons and thermal to epithermal neutron ratio)
- standard N<sub>0</sub>-calibration function (Desilets et al., 2010)

$$SWE = a_0 \left( \frac{N_{cor}}{N_0} - a_1 \right)^{-1} - a_2$$

physically-based calibration approach (Desilets, 2017)

$$SWE = -\Lambda ln \left( \frac{N - N_{snow}}{N_{SWC} - N_{snow}} \right)$$

 $\Lambda$  = neutron attenuation by snow water

 $N_{snow}$  = neutron count rate for an infinite snow depth

 $N_{SWC}$  = neutron count rate in the absence of snow cover





# PINIOS HYDROLOGIC OBSERVATORY AND THE CS3 TEST SITE







# **INSTRUMENTATION OF THE CS3 TEST SITE**







# **DATA OVERVIEW**

Temp. and Precip.

Snow depth

Epitherm. neutrons

Therm. neutrons

Neutron ratio

In-situ and CRNP soil moisture







### A SINGLE SNOW EVENT







# RELATIONSHIP BETWEEN SNOW DEPTH AND SNOW WATER EQUIVALENT



Weighing precipitation gauge (PLUVIO)









#### SELECTED SNOW DEPTH OBSERVATIONS

Only snow depth measurements during the build-up phase of the snowpack to exclude any possible influence of snowmelt, density changes in the snowpack, or evaposublimation







# **RESULTS - REGRESSION FUNCTIONS**

Epitherm. neutrons





Therm. neutrons







# N<sub>0</sub> CALIBRATION FUNCTION









#### PHYSICALLY-BASED CALIBRATION







### **COMPARISON – EVENT SCALE**

Epitherm. neutrons regression function

Neutron ratio regression function

N<sub>0</sub> calibration function

Physically based



## **COMPARISON – SEASONAL SCALE**

Winter 2017/18



Winter 2018/19



>= 0°C



### **COMPARISON – SEASONAL SCALE**

Winter 2019/20







# **COMPARISON – ALL SCALES**

| SWE conversion method                  | RMSE (mm)    |                |             |
|----------------------------------------|--------------|----------------|-------------|
|                                        | Whole period | Winter periods | Snow events |
| Epithermal neutron regression function | 44.89        | 12.50          | 7.81        |
| Neutron ration regression function     | 36.69        | 16.32          | 9.16        |
| N <sub>0</sub> calibration function    | 19.87        | 8.92           | 6.37        |
| Physically based model                 | 15.44        | 9.89           | 7.42        |





#### **SUMMARY**

- N<sub>0</sub>-calibration function and the physically-based calibration function performed best
- Above-ground CRNP can be used for continuous SWE determination
- However, heavy rainfall can lead to erroneous indications of snow events, e.g. due to the occurrence of ponding water
- Future research should seek to improve characterization of onsets and endings of snow cover events, e.g. by combing with other sensors



