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REAL-TIME RESERVOIR SYSTEM
DECISION PROBLEM

N\
2
%

Water supply
Flood control
Irrigation

Recreational
Hydropowe;r

off modelin

coooU

Main unknowns
* Inflows into dam reservoir
» Market parameters
* etc.

()  Outflows

Leakage and evaporation
Weir discharges
Turbined flows

Water supply/Irrigation

Challenges:

« Dynamic system,

* Nonlinear and non-convex problem, Reservoir
» Large scale,

« Stochastic inputs Flood risk 5




STUDY AREA: YUVACIK DAM & BASIN

Uncertainty becomes much larger when managing small basins and small rivers.
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DANGER OF FLOODING

= Excess amount of water during March through May months due to
relatively small capacity is being spilled to a 12 km long manmade
downstream channel and flowed into Marmara Sea.

= This channel passes through a rural and an industrial district and
therefore, spillway discharges are getting important.

"= These two photos are taken on 2010 year. Although spillway gates were
not operated, a flood was observed in downstream channel area. o

=
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THE BACKGROUND OF THE CURRENT

STUDY CAN BE FOUND AT...
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Abstract Reservoir operations require enhanced operating procedures for water systems
under stress attributed to growing water demand and consequences of changing hydro-
climatic conditions. This study focuses on the management of the Yuvacik Dam Reservoir
for water supply and flood mitigation in the Marmara Region of Turkey. We present an
improved operating technigque for fulfilling the conflicting water supply and flood mitigation
objectives. This is accomplished by incorporating the long term water supply objectives into a
Guide Curve (GC) whereas the extreme floods are attenuated by means of short-term
optimization based on Model Predictive Control (MPC). The reference case implements
operating rules with a constant GC at maximum forebay elevation targeting the fulfillment
of the water supply objective. We compare the reference with a new time-dependent GC,
derived using an Tmplicit Stochastic Optimization (ISO) approach. This new curve shows
nearly the same performance regarding the water supply objectives, but significantly reduces
the flooding risk downstreamn of the dam. Possible flood events observed at the end of the wet
season, when the reservoir is at the maximum level to enable water supply for the dry season,
can be eliminated by the application of an additional short-term optimization by MPC. The
robustness of the approach is demonstrated via hindcasting experiments.

Kevwords Reservoir operation - Optimization - Simulation - Water supply - Flood mitigation -
Model Predictive Control
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= Uysal et al. (2018a) aims to
derive operating Guide Curve
(GC) based on Model

Predictive Control (MPC)

application.

= Also, the closed-loop

simulation (hindcasts) shows

the advantages of using MPC.

Uysal et al. (2018a)
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AIM & CONTENT OF THIS STUDY

= This study practices (hourly) ensemble streamflows

as Input of the recurrent reservoir operation

problem which can incorporate:
UNCERTAIN

. . TY
(I) forecast uncertainty,

(i) forecasts with a higher lead-time and

(iif)a higher stability
Thus, the aim of this study is to set a TB-MPC based real-time

reservoir operation via hindcasting experiments.
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Abstract: Optimal control of reservoirs is a challenging task due to conflicting objectives, complex
system structure, and uncertainties in the system. Real time control decisions suffer from streamflow
forecast uncertainty. This study aims to use Probabilistic Streamflow Forecasts (PSFs) having a
lead-time up to 48 h as input for the recurrent reservoir operation problem. A related technique for
decision making is multi-stage stochastic optimization using scenario trees, referred to as Tree-based
Model Predictive Control (TB-MPC). Deterministic Streamflow Forecasts (DSFs) are provided by
applying random perturbations on perfect data. PSFs are synthetically generated from D5Fs by a new
approach which explicitly presents dynamic uncertainty evolution. We assessed different variables in
the generation of stochasticity and compared the results using different scenarios. The developed



HINDCAST EXPERIMENTS

= Hindcasting experiments* are the representation of a real-

time system by an iterative process.

= We apply closed-loop hindcasting experiments by the
following three modes:
Perfect Hindcast Experiments: Best! (No Uncertainty)

Deterministic Hindcast Experiments: No uncertainty (Only one

single forecast member)

Probabilistic Hindcast Experiments: Multiple forecast members!
This represents the skill of ensemble PSF evaluation by multi-

stage stochastic TB-MPC.

* Check Uysal et al. (2018b) for details.



METHODOLOGY

IS comprised of ...
1. Reservoir Controls

2. Optimization

This Photo by Unknown Author is licensed
under CC BY-SA

3. Uncertainties in flow forecasting

4. Stochastic Optimization + Control = ?

IN ' ouTt
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This study complements deterministic methods by PSF integrated TB-MPC including
forecast uncertainty.

= Mainly three

— M scenarios are

| conducted in MPC

ﬁ/ / 1. Perfect MPC (using
meionofs observed data, Qg

o) flood hydrograph)

/ / 2. Deterministic MPC
(using DSFs)

Deterministic MPC | f =0 Stochastic 3 . I\/I u | t i = S t ag e M P C

(closed-loop mode) | g

(closed-loop mode) (u S I N g P S F S)

\ 4 Y

Stochastic hindcast
experiment results
(Exp-A & Exp-B)

Perfect & DSF hindcast
experiment results

Compare results

Deterministic Streamflow Forecasts (DSFs) are provided by applying random

Main FIOW Chart perturbations on perfect data.

Uysal et al. (2018b)



FORECAST GENERATION

(PERFECT, DSF & PSF)

Condition 1:
Normal distribution

Condition 2:
Correlation
between
forecasts

Uysal et al. (2018b)

Inflow [ma.’s]

a

Inflow [m~/s]

Forecast uncertainty

1000

800

600

400

200

1000 1000
800 _ 800
n
600 ‘“E 600
400 3 a0
€
200 200
0 o .
10 20 30 40 50 10 20 30 40 50 0 10 20 30 40 50
Hours [T0 :01-May-2012 08:00:00] Hours [TO :01-May-2012 12:00:00] Hours [T0 :01-May-2012 16:00:00]
1000 1000
80
v
“e 600
g 400
=
IS
200
] 0 -
10 20 30 40 50 10 20 30 40 50 0 10 20 30 40 50
Hours [TO :01-May-2012 20:00:00] Hours [T0 :02-May-2012 00:00:00] Hours [TO :02-May-2012 04.00:00]
1000 1000

10 20 30 40
Hours [TO :02-May-2012 08:00:00]

10 20 a0 40
Hours [T0 :02-May-2012 12:00:00]

Condition 3:

Increasing uncertainty

50 0 10 20 30 40 50

Hours [TO :02-May-2012 16:00:00]

>

Condition 4:
Updating the inflows
(depending on
condition)

Time

[ oy




MODEL PREDICTIVE CONTROL (MPC)

Simultaneous MPC Xk _ f (Xk—l’ Xk | uk | d k)

k Kk Ak
y" =g(x",u",d")
where X, Y, U, d are respectively the state, dependent variable, control and disturbance vectors,
and f(), g() are functions representing an arbitrary linear or nonlinear water resources model.

N-1

Cost function: JOF uf, dY+ EY u”,dY)
uxe{ ,‘:1

Subject to: h(x*, y*u',d")<0,k=1,.,N
x' = f(x* x5t ,d¥) =0

the related model (herein, reservoir simulation equations) becomes an equality constraint of the
optimization problem in the last equation.

...enabling the use of state-of-the-art Nonlinear Programming such as the open source
optimizer IPOPT (Wachter and Biegler 2006). The model itself is implemented in RTC-Tools
(Schwanenberg et al. 2014). 13



MULTI-STAGE STOCHASTIC SET-UP

The problem is extended through multi-stage stochastic set-up by changing d* with
d j.‘ where j denotes the ensemble index (j=1,...,M) and k denotes the time instant

(k=1,...N) .

Z/J.X,'E

Zp ZJ(xj, b, d¥ )+ E(xY u? ,dY) (6)

where p; stands for the probability of the ensemble member, M stands for the

number of the ensembles.

Definition of control variable uf identifies the approach for stochastic MPC set-up.

At this point, multi-stage stochastic optimization (so called Tree-based MPC, TB-
MPC) 1s dedicated way which uses scenario trees for disturbance, states and control
trajectories [4].

Uysal et al. (2018b)



CONTROL INTERFACE AND

MODELING SOFTWARE

m Deltares-Flood Early Warning System (FEWS)

(Werner vd., 2013)
" Real Time Control (RTC)-Tools
(Schwanenberg ve Becker, 2009)
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TREE REDUCTION METHOD

" Tree-based reduction method is applied to ensemble
members Fan et al. (2016)

Uysal et al. (2018b)
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MODEL SET-UP

Storage equation gk — k=11 N(Qk o . Q!f/vs)

piecewise-linear level-storage relation  fpt = f,. (Sk)

Fbyin < U < fbuae  The system’s physical limits

=
=
N——

k
Qbmnx = fb‘d(‘ (f

A reservoir having a limited capacity should include the terms below
for hourly management:

J1(fb) = un 5 finax — f[’k ° Q =
10) =1 2 (s — 1) Objective Function

Q ):fl':A§<Q5k)
- i (0 - Q) min/(fb,Qs)  _ JI+J2+]3+J4+]5
ke{o,..., T}
GC ISSU@\’ 4(fb) = uZmn(ﬂ?k—f 10>2

N 5
Uysal et al. (2018b) =ws 3 (@41 - o)



RESULTS (PERFECT AND

DETERMINISTIC HINDCASTS)

= |f there is no uncertainty in forecasts
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AN OPEN-LOOP EXAMPLE RESULT

FOR STOCHASTIC OPTMIZATION

 Open-loop optimization results of multi-stage stochastic
optimization (from Sce-Q100a) for 48 hr ahead
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(a) Spillway discharge trees (m3/s);
(b) (b) forebay elevation trees (m).

Uysal et al. (2018b)



RESULTS (DIFFERENT BRANCHES)

What is should be the optimum branch number (due to reduction method)?
« Optimum results are received after 16 tree branches

Note: 1 tree stochastic MPC = Deterministic MPC (almost)
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Comparison of closed-loop MPC with different tree reduction branches for 48 h forecast
horizon (Sce-Q100a): (a) Spillway discharge (m3/s); (b) forebay elevation (m).



RESULTS (FOREBAY ELEVATION &

SPILLWAY DISCHARGE)

Comparison of deterministic (perfect and DSF) and stochastic (PSF) closed-loop
MPC results with different forecast horizons (Sce-Q100a): (a) 18 h; (b) 24 h; (c) 36 h;

Uysal et al. (2018b)
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Additional scenarios are also tested in Uysal et al. (2018b)




COMPARISON WITH DIFFERENT METRICS (1)

Peakflow assessment of deterministic and stochastic closed-loop MPC
results for different inflow conditions with forecast horizons of 48 h.

yarograp Deterministic MPC Stochastic MPC

Sce-Q25a 243 231
Sce-Q25b 255 243
Sce-Q25c¢ 248 243
Sce-Q50a 241 211
Sce-Q50b 245 200
Sce-Q50c 246 200
Sce-Q100a 242 200
Sce-Q100b 269 235
Sce-Q100c 278 233

Flood volume assessment of deterministic and stochastic closed-loop MPC results for
different inflow conditions with forecast horizon of 48 h.

Deterministic MPC Stochastic MPC

Sce-Q25a 0.507 0.302
o Sce-Q25b 0.549 0.254
Sce-Q25¢ 0.438 0.271
Sce-Q50a 0.666 0.062
o Sce-Q50b 0.471 0.004
Sce-Q50c 0.331 0.004

Sce-Q100a 0.690 0.004
Q100 Sce-Q100b 1.256 0.184
Sce-Q100c 1.018 0.127

Uysal et al. (2018b)



COMPARISON WITH DIFFERENT METRICS (2)

FSI value assessment of deterministic and stochastic closed-loop MPC
according to Flood Control Levels (FCLSs) for different inflow conditions with
forecast horizon of 48 h.

Scenarios
Deterministic MPC Stochastic MPC
Sce-Q25a 0.652 0.800
Sce-Q25h 0.659 0.990
Sce-Q25c¢ 0.659 0.796
Sce-Q50a 0.566 0.723
Sce-Q50b 0.598 0.770
Sce-Q50c 0.606 0.758
Sce-Q100a 0.457 0.650
Sce-Q100b 0.463 0.645
Sce-Q100c 0.456 0.645

control pool

Z N |kl effective flood storage  actual volume of the flood
k:1

FSI = VE L IF[VE < v
s N vi =B T for k=1,2,..N
K= FC VieL TV > Veg

L
time instant

Uysal et al. (2018b)
storage corresponds to flood control level current storage



CONCLUSIONS

Assessment of forecast uncertainty is still lack in real time
operation of water resources optimization.

The operation of multi-purpose dam reservoir having water
supply, flood control targets is tested in a real-time operation
against a major flood scenario.

MPC models are developed to mimic a real-time control via
hindcast experiments.

Synthetic deterministic and probabilistic hourly streamflows
with 48 hours lead-time are employed in deterministic and
stochastic MPC models, respectively.

Tree-based MPC is selected because of including forecast
uncertainty consideration in the decision system.

The preliminary results of TB-MPC are promising in terms of
downstream region safety compared to deterministic MPC
without harming water supply targets.

In the future studies, the developed framework can be tested
with numerical weather prediction based forecasts.
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