

More perceived but not faster evolution of heat stress than temperature extremes in the future

Audrey Brouillet^{1*} and Sylvie Joussaume¹

¹Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL, CEA/CNRS/UVSQ), Gif-sur-Yvette, France *Contact : **audrey.brouillet@lsce.ipsl.fr**

♦ What we do know:

- Global warming observed and projected until 2100 according to CMIP5 models (*Collins et al., 2013*);
- Associated hot extremes have increased and will increase in the future (e.g. *Horton et al., 2016*)
- The heat stress, defined as the combined effect of temperature and humidity of the human body (e.g *Kjellström et al., 2009*), will increase along with temperature but with different behaviours due to humidity changes (e.g. *Fischer and Knutti, 2013 ; Coffel et al., 2019 ; Brouillet and Joussaume, 2019*)

♦ What we want to know:

How global warming of heat extremes could be perceived by populations in the future ?

<u>Corresponding paper</u>: Brouillet A. and Joussaume S. (2020). More perceived but not faster heat stress evolution than temperature extremes in the future. Climatic Change (in revision)

- ♦ Selected indicators to investigate how climate change could be perceived independently from physiological and psychological factors
- → A set of 12 Earth System Models is selected from CMIP5 projections to conduct climate data analyses from 1959 to 2100 (future scenarios : RCP8.5 and RCP2.6).
 - (1) Extremes are intuitively closer of what people feels of the climate than annual and seasonal means \rightarrow we analyse annual hot extremes (defined as higher than annual 99th percentile);
 - (2) The heat stress can be considered as a "feels-like" indicator due to its definition and used → we analyse the simplified Wet-Bulb Globe Temperature* (WBGT), a well-known heat stress index;
 - (3) The climate change is analysed for each year as the difference between the last 20-years and the upcoming $20-y \rightarrow we$ quantify the speed of change with moving baselines;
 - (4) Yearly speeds are compared to each recent 20-y interannual variability to characterize how upcoming change will emerge from what people just experienced → we compare speeds of change with the standard deviation of the last 20-y annual extremes.

=> Intensifications of both extremes of temperature (T_{99}) and WBGT (WBGT₉₉) accelerate in the future (RCP8.5).

- $_{99}^{\star}$ Fastest warming of T_{99} in Europe during early 2000s, but all over mid-continental regions in 2080.
- * Different patterns for WBGT₉₉. Fastest speed of increase in the northern hemisphere in 2000 and in Amazonia, Sahel to Arabia region and northeastern Asia in 2080.

For a year t, the speed of change is calculated as :

$$\Delta X(t) = \langle X \rangle_{t+1,t+20} - \langle X \rangle_{t-20,t-19}$$

=> Regional means between 1979 and 2100 confirm patterns of running speeds.

=> **However**, both speeds cannot be compared due to different unit systems nor true physical quantity for WBGT. So :

=> The corresponding accelerations of running intensifications are very similar between T_{99} and WBGT₉₉ region per region (RCP8.5).

- * Despite the fastest ΔT_{99} in Europe in 2080, the slowest acceleration is projected in this region in 2080. The largest acceleration is projected in the tropics.
- * Accelerations are very similar between T_{99} and WBGT $_{99}$ intensifications. This stands in contrast with the expected faster heat stress increase due to Clausius-Clapeyron relation.

=> Normalized speeds with each recent 20-y interannual variability (i.e. $\alpha_{\Delta x}$) show a more emergent WBGT₉₉ intensification than T₉₉ between 1979 and 2100 for all latitudes but particularly in the tropics (RCP8.5).

- * $\alpha_{\Delta WBGT99}$ will be stronger than $\alpha_{\Delta T99}$ for all regions until 2080. Upcoming changes will be more and more emergent from what people just experienced, especially in WBGT₉₉ compared to T_{oo}.
- $\underline{\ }^*$ Tropics will experience larger $\alpha_{\Delta X}$ than mid-latitudes, exhibiting more emergent upcoming intensifications of extremes in these regions, despite the larger warming projected in northern mid- and high-latitudes.

=> More than 30% of the global world population will experience a WBGT $_{99}$ change at least twice larger than the recent interannual variability (less than 15% of the population for T_{99}). For Amazonia and western-equatorial Africa, exposures will be larger than 80% in WBGT $_{99}$.

Exposure of **world population** (in %) for $\alpha > 2$ (i.e. speed of change larger than twice the last 20-y interannual variability)

◊ Conclusions

- => Intensifications of both temperature and WBGT extremes accelerate in the future (RCP8.5). Nevertheless, corresponding accelerations are very similar between both heat extremes intensifications region per region (for RCP8.5);
- => Normalized speeds with each recent 20-y interannual variability show more emergent WBGT₉₉ increases in the future than in T_{99} , particularly in the tropics (for RCP8.5, confirmed under the RCP2.6 scenario).
- => More than 30% of the global world population will experience a WBGT $_{99}$ change at least twice larger than the just experienced interannual variability (less than 15% of the population for T_{99}). For Amazonia and western-equatorial Africa, exposures will be larger than 80% in WBGT $_{99}$.
- => These results suggest that the global warming will be more perceived in tropical regions than in mid-latitudes and particularly in heat stress compared to temperature.
- => Brouillet A. and Joussaume S. (2020). More perceived but not faster heat stress evolution than temperature extremes in the future. Climatic Change (in revision)

References

[*] ABOM (2010) The Wet-Bulb Globe Temperature (WBGT). Australian Bureau of Meteorology. URL http://bom.gov.au/info/thermal_stress

Brouillet A and Joussaume S (2019) Investigating the Role of the Relative Humidity in the Co-Occurrence of Temperature and Heat Stress Extremes in CMIP5 Projections. Geophysical Research Letters p 2019GL084156, DOI10.1029/2019GL084156

Coffel ED, Horton RM, Winter JM, Mankin JS (2019) Nonlinear increases in extreme temperatures paradoxically dampen increases in extreme humid-heat. Environmental Research Letters 14(8):084003, DOI 10.1088/1748-9326/ab28b7

Collins M et al. (2013) Long-term Climate Change: Projections, Commitments and Irreversibility, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, chap 12, p 1029–1136. DOI 10.1017/CBO9781107415324.024

Fischer EM, Knutti R (2013) Robust projections of combined humidity and temperature extremes. Nature Climate Change 3(2):126–130, DOI 10.1038/nclimate1682

Horton RM et al. (2016) A Review of Recent Advances in Research on Extreme Heat Events. Current Climate Change Reports DOI 10.1007/s40641-016-0042-x

Kjellstrom T, Holmer I, Lemke B (2009) Workplace heat stress, health and productivity – an increasing challenge for low and middle-income countries duringclimate change. Global Health Action 2(1):2047, DOI 10.3402/gha.v2i0.2047

Further reading

Chavaillaz Y, Joussaume S, Dehecq A, Braconnot P, Vautard R (2016) Investigating the pace of temperature change and its implications over the twenty-first century. Climatic Change 137(1-2):187–200, DOI 10.1007/s10584-016-1659-4

Donat MG, Pitman AJ, Seneviratne SI (2017) Regional warming of hot extremes accelerated by surface energy fluxes: Accelerated Warming of Hot Extremes. Geophysical Research Letters 44(13):7011–7019, DOI 10.1002/2017GL073733

Grundstein A, Cooper E (2018) Assessment of the Australian Bureau of Meteorology wet bulb globe temperature model using weather station data. International Journal of Biometeorology 62(12):2205–2213, DOI 10.1007/s00484-018-1624-1

Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proceedings of the National Academy of Sciences 109(37):E2415–E2423, DOI 10.1073/pnas.1205276109

Matthews TKR et al. (2017) Communicating the deadly consequences of global warming for human heat stress. Proceedings of the National Academy of Sciences 114(15):3861–3866, DOI 10.1073/pnas.1617526114

Moore FC, Obradovich N, Lehner F, Baylis P (2019) Rapidly declining remarkability of temperature anomalies may obscure public perception of climate change. Proceedings of the National Academy of Sciences p 201816541, DOI 10.1073/pnas.1816541116

Zhao Y et al. (2015) Estimating heat stress from climate-based indicators: present-day biases and future spreads in the CMIP5 global climate model ensemble. Environmental Research Letters 10(8):084013, DOI 10.1088/1748-9326/10/8/084013

