Do grain boundaries act as a water reservoir in Earth’s mantle?

Joe Gardner*, Jacob Tielke, Julian Mecklenburgh, Elisabetta Mariani, John Wheeler

*Contact: jgardner@liv.ac.uk
Where is water stored in mantle materials on the grain scale?

- Recent models suggest there is 1-7x amount of water in Earth’s mantle as in all Earth’s oceans (Peslier et al., 2017)
 - Water lowers the viscosity of mantle rocks deforming by both dislocation creep and diffusion creep
 - Directly impacts Earth’s geodynamic behaviour

- Grain boundaries proposed to have concentrations of water hundreds of times greater than grain interiors, because they are disordered environments compared to crystal lattices (e.g. Hiraga et al., 2007)
 - Chemical segregation at boundaries influences grain boundary diffusivity, which impacts bulk viscosity of diffusion creep (Marquardt and Faul, 2018)
 - Creep strength of water-rich olivine aggregates deforming by DisGBS is much lower than strength of water-rich olivine deforming by dislocation creep (Ohuchi et al., 2015)
Where is water stored in mantle materials on the grain scale?

• Previous evidence for chemical partitioning at grain boundaries
 ➢ EPMA – incompatible element partitioning at grain boundaries (Ca; Hiraga et al., 2004)
 ➢ Synchrotron FT-IR – H$_2$O-enriched regions close (tens μm) to boundaries (Sommer et al., 2008)

• But enrichment of water (H$^+$) itself has never been imaged at the scale of grain boundaries (~1 nm), because of the small scale of the target, and the experimental challenges of detecting H$^+$ by traditional analytical techniques

• Nanometer-scale resolution secondary ion mass spectrometry (NanoSIMS) may help to resolve this issue
 ➢ Spatial resolution limit of 50 nm
 ➢ Detection limits of ppm to ppb, depending on element

At mantle P-T conditions, H$_2$O dissociates to H$^+$ and OH$^-$.

CC BY
How Secondary Ion Mass Spectrometry works

A beam of primary ions (we used Cs⁺) is used to sputter particles from the sample surface.

Some of the liberated particles are ionised (i.e. secondary ions).

The secondary ions are directed to a mass spectrometer using magnets.

Image source: www.cameca.com/products/sims/technique
To perform the NanoSIMS tests, we first made some synthetic mantle, doped with heavy water (D_2O)

2H used as easier to detect than 1H by NanoSIMS, and to distinguish from atmospheric water

Sealed capsule so D_2O could not escape during the experiment

Equivalent to a depth of ~ 10 km

Olivine (80 wt%) + enstatite (20 wt%) powder

Stainless steel

Experimental conditions:
$T = 1250 \degree C$, $P = 0.3$ GPa, $t = 3$ hours

Long enough for equilibrium concentration of H to be attained in grain interiors via lattice diffusion

Fo100 bicrystal (not used in this study)

Fo89 single crystal (not used in this study)

Nickel
We collected EBSD before NanoSIMS because NanoSIMS signal at grain boundaries can depend on:

- Orientation of lattice with respect to beam
- Angle of boundary with respect to beam
- Misorientation between grains

See slide 9

White boxes indicate NanoSIMS sites

- Data were collected at triple junctions to acquire information from three boundaries per site
- Not all sites of interest yielded clear results

See slide 10
We collected NanoSIMS data on the Cameca NanoSIMS 50L at the University of Manchester.

Photo credit: K Moore, Manchester
The 2H map data are summed from 1000 frames. The 2H count maps are averaged over a line width that incorporates multiple (50 or 100) pixels along the length of the boundary. Boundary profiles are drawn perpendicular to the boundary, as judged by eye. The misorientation angle across the boundary is $\text{MO} = 78^\circ$. Yellow dot indicates spot size of beam during scan (200 nm diameter).
NanoSIMS results site 3

- Mean 2H counts
- Profile 1:
 - MO = 78°
- Profile 2:
 - MO = 82°
- Profile 3:
 - MO = 80°

- Peak at boundary
- No clear peak at boundary
- Peak at boundary

- Subtle enrichment along boundaries
- ‘Pore’ enriched with 2H

- 1000 frames
- 256 x 256 pixels
- Beam diameter: 200 nm
- Line width: 50 px
- = spline fit

- 5 µm scale bar
NanoSIMS results site 6

- 1000 frames
- 256 x 256 pixels
- Beam diameter = 200 nm
- Line width = 50 px, except profile 5 (100 px)
- = spline fit

Shape of ‘pore’ in sum O map and sum 2H map is slightly different

Scale shows signal much weaker than at site 3

No clear peak

Sum O

1000 frames
256 x 256 pixels
200 nm
50 px, except profile 5 (100 px)
$=$ spline fit

Profile 3

Profile 4

Profile 5

Peak

MO = 78°

MO = 97°

MO = 61°

Wide peak

MO = 61°

Same boundary, different line width: upper = 50 px, lower = 100 px
We can use boundary profile data to estimate a partition coefficient for ^2H between boundary and lattice.

$$D^H_{\text{bound}/\text{lat}} = \frac{\pi \left(\frac{B_d}{2} \right)^2}{B_d \delta} \times \left(\frac{H^c_{\text{tot}}}{H^c_{\text{lat}}} - 1 \right) + 1$$

- $B_d = \text{beam diameter}$
- $\delta = \text{grain boundary width}$

Table

<table>
<thead>
<tr>
<th>Site</th>
<th>Boundary profile</th>
<th>B_d (nm)</th>
<th>δ (nm)</th>
<th>H^c_{tot} (counts)</th>
<th>H^c_{lat} (counts)</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>200</td>
<td>1</td>
<td>0.2315</td>
<td>0.064</td>
<td>412.1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>200</td>
<td>1</td>
<td>0.8213</td>
<td>0.5455</td>
<td>80.4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>200</td>
<td>1</td>
<td>1.0037</td>
<td>0.584</td>
<td>113.9</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>200</td>
<td>1</td>
<td>0.8889</td>
<td>0.5875</td>
<td>81.6</td>
</tr>
</tbody>
</table>

Assumption of boundary width based on TEM results in Hiraga et al (2002)
How do our values of D compare with previous studies?

To our knowledge, there are no previous studies that report partition coefficients for 1H or 2H in olivine from (nano)SIMS.

<table>
<thead>
<tr>
<th>Study</th>
<th>Boundary phases</th>
<th>Element/compound partitioned</th>
<th>Method</th>
<th>D (boundary conc/lattice conc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>olivine-olivine</td>
<td>2H</td>
<td>NanoSIMS</td>
<td>10^1 - 10^2</td>
</tr>
<tr>
<td>Hiraga et al 2004</td>
<td>olivine-olivine, no melt</td>
<td>Ca</td>
<td>STEM/EDX</td>
<td>10^1 - 10^2</td>
</tr>
<tr>
<td>Hiraga and Kohlstedt 2007</td>
<td>diopside-melt</td>
<td>various incompatible elements</td>
<td>EPMA/STEM/EDX</td>
<td>$~10^0$ - 10^1</td>
</tr>
<tr>
<td>Sommer et al 2008</td>
<td>olivine-spinel</td>
<td>H_2O</td>
<td>Synchrotron FTIR</td>
<td>Actual D not reported, but $~140$ ppm reported in lattice far from interface, 200-440 ppm 15 μm away from boundary, $~800$ ppm closest to boundary, so $800/140 = ~5$-6 (represents minimum value). Not AT the boundary, but in lattice region closest to boundary</td>
</tr>
<tr>
<td>Fei et al 2015</td>
<td>Olivine-olivine</td>
<td>H_2O</td>
<td>Synchrotron FTIR</td>
<td>$~520$</td>
</tr>
</tbody>
</table>
Issue with beam width vs boundary width

- Weak 2H signal means we needed to use relatively wide aperture (D1-3), resulting in a beam width of 200-250 nm.
- Angle of drawn boundary profile to actual boundary also important – if not perpendicular would result in wider, flatter peak.

- Wide beam results in peak \gg grain boundary width (~1 nm):
- Peak resolved more clearly in profiles constructed from averaging over a greater boundary length:

![Graph 1](image1.png)

- Site 6, profile 4
 - line width = 50 px
 - 750 nm

![Graph 2](image2.png)

- Site 6, profile 5
 - line width = 100 px
 - 500 nm
Conclusions and implications

• NanoSIMS was successfully used to image partitioning of D$_2$O between grain interiors and the grain boundary *region* at some, but not all, analysed olivine-olivine boundaries

• No clear relationship was observed between misorientation angle and recorded 2H signal (but more boundaries need to be analysed)

• Partition coefficients calculated from the data suggest that some boundaries are enriched in 2H by 2-3 orders of magnitude compared to grain interiors

• Boundaries at which partitioning was observed yield partition coefficients of the same order of magnitude as previous studies on other elements, suggesting that boundary environments can be enriched in 2H relative to grain interiors at equilibrium

• These observations concur with the conclusions of previous studies, adding to the weight of evidence that suggests grain boundaries can act as a substantial water reservoir in Earth’s mantle
Future work (samples)

• Could enriched region in 2H maps be a melt pocket (i.e. glass)?
 ➢ Secondary electron imaging to analyse topography – pore or filled?
 ➢ EDX to analyse composition – if Ca-rich, suggestive of melt

• Could observed peaks on boundaries also be melt/glass lining?
 ➢ TEM foils cut across the grain boundary to analyse material at atomic scale – are boundaries tight or porous; are they lined with non-crystalline material?

• To date, only fully analysed one experimental condition. Need to perform same analysis on two other samples synthesised at
 ➢ $T = 1000 \, ^\circ\!\!C, P = 2\, GPa, t = 0.1\, h$
 ➢ $T = 1200 \, ^\circ\!\!C, P = 2\, GPa, t = 24\, h$

 Short experimental timescale so equilibrium partitioning between boundary and lattice may not have been reached; important for comparison

 At these conditions, production of melt in experiments is extremely unlikely
Future work (technique)

• For greater spatial resolution across grain boundaries, use of a smaller aperture would be required, for which the 2H signal in such synthetic samples would need to be amplified.

• Was lack of observed partitioning at some boundaries due to genuine lack of partitioning, or because degree of partitioning was beyond the resolution limits of the technique, or masked by matrix effects? Higher resolution analyses and characterisation of grain/boundary (mis)orientations may help answer such questions.