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Context:

Many geological dynamical processes take place in systems that are heterogeneous in composition, density and mechanical
properties:

* settling of crystals and nodules in a magma chamber

* upwelling of magma bodies in heterogeneous
lithosphere

e filling of fractures, etc.

* magma-mush transition

However, description and prediction of these kind of processes often require the definition of an “effective rheology” of the
medium.
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Z Back scattered electron images of deformed crystal-bearing magma.
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Characteristics of those systems:
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The experiment: object falling in a fluid

* In Newtonian fluid, it’s a classical problem and it can be used to measure the viscosity of the fluid.
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Two end-members:

Siz Cintruder << Size fluid—structure

Porous media

|

Size intruder > Size fluid—structure

Macroscopic flow

(From http://hercules.gcsuedu/~sdatta.html)
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E.g. Carbopol

(from Gutowski et al., 2012.)



The fluid under scrutiny

« The gel is a superabsorbent polymer (SAP). It is
polyacrylamide, made by copolymerization of acrylic acid
and acrylamide

* In water, these polymer powder grains swell up to 200
times (1g of this SAP can absorb up to 200g of water) and
form gel grains whose size (d;) can be controlled by

controlling the size of the initial powder.

After water
absorption

Lejcus et al. (2015)

We performed experiments with 5 different grain
size gels.

The grain size distributions (by imaging analysis)
and average equivalent grain sizes are:
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Rheological behaviour of SAPs and
Carbopol gels

SAP:
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Experimental setup

[lluminated cross-section

* Sphere was dropped in the center of a
cylindrical vessel (100 mm wide and 500 mm
deep) previously filled by the gel.

* The diameter of the spheres (dg) ranges
between 3 and 30 mm. We use spheres of
various materials (steel, tungsten, nickel alloy,
glass) in order to cover a wide range of
densities (from 2200 to 15000 kg/m?3).

* Gels have been gently stirred for 2-3 days in
order to eliminate air bubbles and to avoid
preferential paths between different ball
releases.




* 5 motion regimes. For a given gel we get:
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e Scalings:

Taking Carbopol as end member (that is, dsppere > dgrain), the slow motion of a sphere (i.e. not considering

the stoppage cases) is parameterized by two key dimensionless numbers (Bingham and Yield number) and a

master curve:
From Tabuteau et al (2007).
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In SAP, no-motion (A) and the logarithmic (¢) regime are also observed for 1/Y > 1/Y,.
This is due to the interaction between spheres and the gel structure.
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When dsypere approachs d g,.qin, Spheres “see” obstacles on their way and the effective rheology breaks down.



The Mush-Magma transition

Crystal-rich magma

SAP

Melt-rich mush

Based on the observed motion regimes in our
experiments, we can derive the following regime
diagram for an “object” that interacts with a

magmatic mush:
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Motion/ no-motion conditions for a buoyant melt pocket (of diameter dl) in a crystal-rich
Hershel-Bulkley magmatic reservoir:

crystal
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* (3):stop & go
* (4): motion conditions
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Motion/ no-motion conditions for a bubble (of diameter db) in a crystal-rich Hershel-Bulkley magmatic reservoir

Bubbles which nucleate within a

crystal mush with yield stress may or
may not move through it:
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At larger yield stress, bubbles

__, get entrapped in the mush.

They can accumulate by further
heating (e.g. from an intrusion)

}

Trigger of Rayleigh-Taylor
instability?

For low values of yield

—» stress, bubbles can move
upward fluidizing a region
of mush around them



Conclusion

Beside the classical steady-state motion and no-motion regimes, typical of viscoplastic fluids, the
interaction between moving objects and fluid structure results in two additional regimes where
motion becomes more chaotic.

Considering the mush as a jamming material, large (and buoyant) melt intrusions or bubbles can
unjam (i.e. fluidize) the mush around them and move slowly upward.

Bubbles which nucleate in a crystal mush with yield stress may or may not move through it. In the
latter case, the accumulation of entrapped bubbles can form a less dense layer. Further heating can
make the layer unstable and a Rayleigh-Taylor instability might develop remobilizing the entire
mush.
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