





# Beyond Forcing Scenarios: Predicting Climate Change through Response Operators in a Coupled General Circulation Model

V. Lembo, V. Lucarini, F. Ragone

4th May 2020





# An increasing number of climate model simulations, based on different forcing scenarios...

| Experiment                                                        | CMIP6 label                   | Experiment description                                             | Forcing methods                                              | Start | End  | Minimum                        | Major purpose                                            |
|-------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-------|------|--------------------------------|----------------------------------------------------------|
| short name                                                        |                               |                                                                    |                                                              | year  | year | no. years<br>per<br>simulation |                                                          |
| DECK experime                                                     | nts                           |                                                                    |                                                              |       |      |                                |                                                          |
| AMIP                                                              | amip                          | Observed SSTs<br>and SICs prescribed                               | All; CO <sub>2</sub> concentration prescribed                | 1979  | 2014 | 36                             | Evaluation, variability                                  |
| Pre-industrial control                                            | piControl or<br>esm-piControl | Coupled atmosphere-<br>ocean pre-industrial<br>control             | CO <sub>2</sub> concentration<br>prescribed or<br>calculated | n/a   | n/a  | 500                            | Evaluation, unforced variability                         |
| Abrupt<br>quadrupling of<br>CO <sub>2</sub> concen-<br>tration    | abrupt-4×CO2                  | CO <sub>2</sub> abruptly quadru-<br>pled and then held<br>constant | CO <sub>2</sub> concentration prescribed                     | n/a   | n/a  | 150                            | Climate sensitivity,<br>feedback, fast responses         |
| 1 % yr <sup>-1</sup> CO <sub>2</sub><br>concentration<br>increase | 1pctCO2                       | CO <sub>2</sub> prescribed to increase at 1 % yr <sup>-1</sup>     | CO <sub>2</sub> concentration prescribed                     | n/a   | n/a  | 150                            | Climate sensitivity,<br>feedback, idealized<br>benchmark |
| CMIP6 historica                                                   | l simulation                  |                                                                    |                                                              |       |      |                                |                                                          |
| Past ~ 1.5<br>centuries                                           | historical or<br>esm-hist     | Simulation of the recent past                                      | All; CO <sub>2</sub> concentration prescribed or calculated  | 1850  | 2014 | 165                            | Evaluation                                               |

### **CMIP6 DECK experiments**



# CMIP6 future climate scenarios

(Eyring et al., 2016)

# ... require an increasing amount of computational resources (also given the increasing complexity of the models)



(Ummenhofer, 2019)

# Can we select what forcing scenarios are actually relevant?

The Ruelle's response theory allows to consider the response as a property of the system, independently from the forcing

A dynamical system is perturbed with a vector field perturbation of the form  $\Psi(x,t) = X(x)f(t)$ .

The expectation value of any observable in the system is:

$$\langle \Phi_f(t) \rangle = \langle \Phi \rangle_0 + \sum_{n=1}^{\infty} \langle \Phi \rangle_f^{(n)}(t)$$
 (1)

The 1st order perturbation is given by:

$$\langle \Phi \rangle_f^{(1)}(t) = \int d\sigma G_{\Phi}^{(1)}(\sigma_1) f(t - \sigma_1)$$
 (2)

 If the time modulation of the perturbation is a Heaviside function, the observable-dependent Green function is:

$$f(t) = \kappa H(t) \tag{3}$$

where H(t)=0 for t=0 and 1 for t>0, k is a constant value of the forcing

 The evolution of any observable is related to its 1st order (linear) Green function as:

$$\frac{d\Phi_{f2CO2}^{(1)}}{dt}(t) = \kappa G_{\Phi}^{(1)}(t)$$
 (4)

- f(t) in (3) is equivalent to the typical forcing scenario with instantaneous
   CO2 doubling (or quadrupling);
- The Green function obtained by inverting (4) is independent of the forcing
   The problem reduces to a simple impulse-response experiment!

# **Experimental setting**

We use a step forcing scenario to construct a linear Green function for an observable and predict its evolution in another forcing scenario

#### **PREDICTOR**

A step increase in CO2
 concentrations at time t=0 until
 2x the preindustrial value (0-2000
 yrs);

#### **PREDICTAND**

- A ramp function experiment:
  - 1.CO2 linear increase by 1% until doubling (0-70 yrs);
  - 2.Stationary CO2 with 2x the preindustrial value (70-1000 yrs);
- Model version: MPI-ESM-CR v1.2 ECHAM6 (T31L31) + MPIOM (GR30L40);
- 2 ensembles, 20 members for each ensemble with same initial conditions;
- Focus on: 2-metre temperature, ocean heat uptake, AMOC at 26N and ACC;

## **Prediction of 2-metres temperature**

2xCO2 step forcing at t=0 (predictor)

Near-surface temperatures 291.0 290.5 290.0 ∑ <sup>289.5</sup> 0.5 289.0 288.5 288.0 287.5 2000 2250 2500 2750 3000 3250 3750 1750 3500 291.0 290.5 290.0 289.5 ∑ ⊢ <sub>289.0</sub> 288.5 288.0 287.5 1750 2000 2250 2500 2750 3000 3250 3500 3750

The Green function is shown in the inset for the first 1000 years

Red: ensemble mean evolution

Blue: predicted evolution with linear response

1% CO2 increase (predictand)



### **Prediction of AMOC at 26N**

2xCO2 step forcing at t=0 (predictor)

The Green function is shown in the inset for the first 1000 years

Red: ensemble mean evolution

Blue: predicted evolution with linear response

1% CO2 increase (predictand)

### **Prediction of ACC at Drake passage**

2xCO2 step forcing at t=0 (predictor)



The Green function is shown in the inset for the first 1000 years

Red: ensemble mean evolution

Blue: predicted evolution with linear response

1% CO2 increase (predictand)

### **Prediction of SSTs in the extratropical Northern Atlantic**



1% CO2

increase

(predictand)



The Green function is shown in the inset for the first 1000 years

Red: ensemble mean evolution

Blue: predicted evolution with linear response

#### Ocean Heat Uptake (OHU): A Green function with a Dirac's

**Green function** 

1% CO2 increase (predictand)



The OHU is representative of the TOA energy imbalance at these scales

The OHU
anomaly is
largest at t=0, as
the step forcing
drives the system
out of balance

OHU tends to vanishing values as the system approaches statistically steady state

# Conclusions

- We have applied an algorithm to retrieve the first order Green function for the response of a generic observable in the climate system;
- For suitable choices of the forcing, the retrieval of the Green function is straightforward;
- We demonstrated the power of the algorithm predicting the evolution of key observables in a typical forcing scenarios;
- The response of the overturning circulation is to a large extent predicted via the linear response;
- A key feature of the regional climate response, the North Atlantic cold blob, is also well predicted;
- The response theory is a valid alternative to running fully coupled climate models for various applications related to climate prediction;

# References

- ➤ Lembo, V., Ragone F., and V. Lucarini, 2020, Predicting Climate Change through Response Operators: A Coupled GCM Study, Sci. Rep. accepted
- ➤ Lucarini, V., Ragone, F. and Lunkeit, F., 2017, Predicting climate change using response theory: Global averages and spatial patterns. J. Stat. Phys. 166, 1036–1064, DOI: 10.1007/s10955-016-1506-z
- ➤ Ragone, F., Lucarini, V. and Lunkeit, F., 2016, A new framework for climate sensitivity and prediction: a modelling perspective, Clim. Dyn. 46, 1459–1471, DOI: 10.1007/s00382-015-2657-3
- ➤ Ruelle, D., 1998, General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A 245, 220–224, DOI: 10.1016S0375-9601(98)00419-8
- ➤ Ruelle, D. 1998, Nonequilibrium statistical mechanics near equilibrium: computing higher-order terms. Nonlinearity 11, 5–18, DOI: 10.1088/0951-7715/11/1/002
- ➤ Ruelle, D., 2009, A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870, DOI: 10.1088/0951-7715/22/4/009