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Processes of metamorphism and 
deformation from snow to ice

Importance

➢… determine gas trapping process, 
influencing ice core signals related to gas, 
such as total air content, gas fractionation 
and close-off depths.

➢… determine propagation/scattering 
processes of electromagnetic waves within 
ice.
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➢Accumulation rate, temperature and temperature 
gradient and wind give strong influence.

➢Textural effects (ice-ice bonding, geometry, c-axis 
orientation) control  densification process.

➢ Ions such as Cl- , F- and NH4
+ either soften or 

harden ice.

Mechanisms related to metamorphism 
and densification

Introduction

We investigated effects of these in this study.
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Figure 1. Location of core sites.
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Measurement of tensorial values of 
the dielectric permittivity

➢mm-wave (15 - 50 GHz) resonators for measurement

➢Continuous 25 - 15mm resolution measurements

De = evertical– ehorizontal

e is a measure of denisty

De is a measure of vertical 

elongation of geometry.

Method

Figure 2. Firn core in the open resonator.
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Permittivity versus depthResults

As it is well-known, depth-density profile depends on accumulation rate and temperature. 
We can see this kind of variations in textbooks of Glaciology such as “Physics of Glaciers”.

Figure 3.  Permittivity versus depth.
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Comparison between various sites
De was found to converge to a value ~0.01.

Measure of density
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Density-anisotropy relation also strongly depends on sites.  De was found to converge to a 
value of ~0.01. This fact means that vertical compression causes vertically elongated geometry. 

Figure 4.
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Observational fact (Please see Figure 4)
➢ We find that firn that have shorter residence time (with larger SMB) at near-surface 

depths does not form strong vertical anisotropy that is caused by vertical movement of 
moistures. 

➢ In contrast, firn that have longer residence time (with smaller SMB) at near-surface 
depths tend to form vertical anisotropy. 

➢ When density exceeds ~600 kg/m3, a common feature of firn at many polar sites is that 
there are evolution of vertically elongated features of pore spaces in firn despite growth 
of vertical compression. 

➢ De was found to converge to a value of  ~0.01 at depths close to bubble close off.

Explanation
➢ As firn becomes denser, air within firn needs to "escape" to upward directions as 

compared to sinking firn. In firn, porous structure tends to have vertically elongated 
structure because of this vertical escape movement of air. 

Practical meaning
➢ This site-dependent porous structure is a kind of “finger print” of the surface conditions. 

This may need to be considered in gas trap process near the bottom of the firn, 
diffusion of gas within firn, and also in analysis of radio wave propagation in firn.

Summary

Thanks for your attention.
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