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This document was exported directly from MATLAB. The original file type, a so-called Live Script, is 

an executable script which combines formatted text and equations with code, the computed results 

and visualizations. Live Scripts may be enriched with clickable control elements such as drop down 

menus and Live Editor tasks that serve a more complex purpose such as detrending and smoothing 

data. In that way, Live Scripts are ideal for both exploratory analyses and the presentation of findings 

in the form of an interactive narrative. Exporting Live Scripts to various formats (e.g. PDF) makes 

sharing easy also with non MATLAB users. 

1 Introduction 

Many regions in the Caribbean often face earthquakes, hurricanes and floods. Especially in poor and 

informal settlements, where buildings are not up to modern construction standards, these natural 

hazards can have a devastating effect. One of the main risk factors of a building is the construction 

material of its roof. Light material may fly off during a hurricane and no longer shelter inhabitants 

from wind, rain and flying debris. Heavy material itself may pose a threat if roofs collapse during an 

earthquake. 

In order to better prepare for disaster, buildings may be retrofit. However, identification of high-risk 

buildings requires time-consuming and costly onsite assessment of building conditions by engineers. 

To make retrofit decisions more quickly and less costly, the use of aerial imagery captured by drones 

together with artificial intelligence algorithms (AI) for image recognition is proposed to automatically 

narrow down the number of buildings that require onsite inspection. 

To proof that image recognition techniques applied to drone imagery can speed up identifying 

relevant buildings, MathWorks sponsored the data science competition "Open AI Caribbean 

Challenge: Mapping Disaster Risk from Aerial Imagery" run by DrivenData in December 2019. The 

objective was to design a machine learning model that is able to most accurately predict roof 

construction material from drone imagery. A set of overhead imagery with labeled building footprints 

was provided by NPO WeRobotics and the Global Progam for Resilient Housing of the World Bank. 

MathWorks provided participants with complimentary software licenses as well as help and support 

developing their AI models. For instance, MATLAB code to design and train a benchmark model was 

published that is discussed in the following sections. 

https://mathworks.com/products/matlab/live-editor.html
https://mathworks.com/help/matlab/matlab_prog/add-interactive-controls-to-a-live-script.html
https://mathworks.com/help/matlab/matlab_prog/add-live-editor-tasks-to-a-live-script.html
https://mathworks.com/
https://blogs.mathworks.com/deep-learning/2019/10/23/open-ai-caribbean-data-science-challenge/
https://blogs.mathworks.com/deep-learning/2019/10/23/open-ai-caribbean-data-science-challenge/
https://www.drivendata.org/
https://werobotics.org/
https://www.worldbank.org/en/topic/disasterriskmanagement/brief/global-program-for-resilient-housing
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2 Image preprocessing 

We are provided with a folder stac containing the dataset consisting of seven large, high-resolution 

Cloud Optimized GeoTiffs of aerial images of regions in Colombia, St. Lucia, and Guatemala 

captured by drones. The spatial resolution of the images is roughly 4cm. Additionally, the dataset 

contains GeoJSON files including the building footprint, unique building ID, and roof material labels 

(for the training data). 

The size of the dataset is around 30GB in total. Within it there are three folders, one for each of the 

countries Colombia, St. Lucia and Guatemala. The folder of each country contains subfolders of 

areas/regions. For instance, within the folder "Colombia" we have two subfolders for the regions 

named "borde_rural" and "borde_soacha". The folder of each region contains: 

• a BigTIFF image file of the region – for example, borde_rural_ortho-cog.tif 

• GeoJSON files with metadata on the image extent in latitude/longitude, training data, and 

test data. 

2.1 Accessing data as bigimage 

We add the path of the top level data folder stac and an create a string array of two region names 

we are training on. This example is restricted to two regions only. To perform training on all the 

regions, add the names of all the regions to the array.  

% Change to whichever folder on your machine contains the dataset. 

addpath(genpath("stac")); 

regionNames = ["borde_rural" "borde_soacha"]; 

bigimage is a function provided by Image Processing Toolbox introduced in MATLAB R2019b for 

processing very large images that may not fit in memory. Here, we create bigimage objects for the 

BigTIFF image of each region. 

for idx = 1:numel(regionNames) 

    bimg = bigimage(which(regionNames(idx) + "_ortho-cog.tif")); 

 

2.2 Separating image channels into RGB and mask 

Once we have the bigimage we notice that the image has four channels – three channels of RGB 

and a fourth mask channel of opacity. With the use of the helper function separateChannels we 

remove the opacity mask channel. For further training we will use the three RGB channels only.  

NOTE: This will take some time to process. Set the UseParallel flag to true to speed things up by 

starting a parallel pool that uses multiple CPU cores. 

    brgb(idx) = apply(bimg,1,@separateChannels,'UseParallel',true); 

 

https://www.cogeo.org/
https://geojson.org/
https://mathworks.com/help/images/ref/bigimage.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/parpool.html
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2.3 Setting spatial reference for bigimage 

Since the image of each region spans a rectangular section with a particular latitude and longitude 

extent, we want to assign this as the spatial reference for the image. This will allow us to extract 

image regions by using the latitude and longitude values rather than the pixel values, which we will 

need to do later on. For more information, refer to the example "set spatial referencing for big 

images" in the documentation. 

Parse the GeoJSON files providing the bounding box of the entire region. 

    fid = fopen(regionNames(idx) + "-imagery.json"); 

    imageryStructs(idx) = jsondecode(fread(fid,inf,'*char')'); 

    fclose(fid); 

Use the bounding boxes parsed out to set the X and Y world limits to the longitude and latitude 

extents. 

    for k = 1:numel(brgb(idx).SpatialReferencing) 

        % Longitude limits 

        brgb(idx).SpatialReferencing(k).XWorldLimits = ... 

            [imageryStructs(idx).bbox(1) imageryStructs(idx).bbox(3)]; 

         

        % Latitude limits 

        brgb(idx).SpatialReferencing(k).YWorldLimits = ... 

            [imageryStructs(idx).bbox(2) imageryStructs(idx).bbox(4)]; 

    end     

end 

clear bimg 

 

3 Preparing image data and labels for training 

 

3.1 Creating training data 

The training set consists of three pieces of information that can be parsed from the GeoJSON files 

for each region: 

1. the building ID 

2. the building polygon coordinates (in latitude-longitude points) 

3. the building material. 

To extract the training set, we open the GeoJSON file of each region, read it and decode the files 

using the jsondecode function. 

 

https://www.mathworks.com/help/releases/R2020a/images/set-spatial-referencing-for-big-image.html
https://www.mathworks.com/help/releases/R2020a/images/set-spatial-referencing-for-big-image.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/jsondecode.html
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for idx = 1:numel(regionNames)     

    fid = fopen("train-" + regionNames(idx) + ".geojson"); 

    trainingStructs(idx) = jsondecode(fread(fid,inf,'*char')'); 

    fclose(fid); 

end 

Once we have all the values in the trainingStructs array we will concatenate all the structures 

together and get a total number of training set elements. 

numTrainRegions = arrayfun(@(x)sum(length(x.features)),trainingStructs); 

numTrainRegionsCumulative = cumsum(numTrainRegions); 

numTrain = sum(numTrainRegions); 

trainingStruct = cat(1,trainingStructs.features); 

Next, we create placeholder arrays for the ID, material, and coordinates. 

trainID = cell(numTrain,1);         % Training data ID 

trainMaterial = cell(numTrain,1);   % Training data material 

trainCoords = cell(numTrain,1);     % Training data coordinates 

Loop through all training data elements. 

regionIdx = 1; 

for k = 1:numTrain 

Extract the ID, material, and coordinates of each ROI. 

    trainID{k} = trainingStruct(k).id; 

    trainMaterial{k} = trainingStruct(k).properties.roof_material; 

    coords = trainingStruct(k).geometry.coordinates; 

    if iscell(coords) 

        coords = coords{1}; 

    end 

    trainCoords{k} = squeeze(coords);     

Increment the index of regions as we loop through the training set to ensure we are referring to the 

correct region. 

    if k > numTrainRegionsCumulative(regionIdx) 

        regionIdx = regionIdx+1; 

    end 

Correct for coordinate convention by flipping the Y image coordinates of the building region 

coordinates. 
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    trainCoords{k}(:,2) = ... 

        brgb(regionIdx).SpatialReferencing(1).YWorldLimits(2) - ... 

        (trainCoords{k}(:,2) - 

brgb(regionIdx).SpatialReferencing(1).YWorldLimits(1)); 

end 

Convert the text array of materials to a categorical array for later classification. 

trainMaterial = categorical(trainMaterial); 

Clear the training data structures since they have now been parsed into individual arrays. 

clear trainingStruct trainingStructs 
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3.2 Visualizing training data 

First, we visualize a specific region and annotate all the training samples as regions of interest 

(ROIs). Generating the thousands of polygons and displaying them along with a large image is a 

graphics and computation intensive process, so it will take some time to run this section. 

To execute the following steps, change the display flag value to true. 

display = false; 

For more information, refer to the example "extract training samples from big image" in the 

documentation. 

displayRegion = "borde_rural"; 

displayRegionNum = find(regionNames==displayRegion); 

 

if  display 

    % Find the indices of the overall training structure that correspond to 

    % the selected region 

    if displayRegionNum == 1 

        polyIndices = 1:numTrainRegions(displayRegionNum); 

    else 

        polyIndices = numTrainRegions(displayRegionNum-1) + ... 

            1:numTrainRegions(displayRegionNum); 

    end 

     

    % Extract the ROI polygons 

    polyFcn = @(position)images.roi.Polygon('Position',position); 

    polys = cellfun(polyFcn,trainCoords(polyIndices)); 

     

    % Display the image with ROIs and label the plot 

    figure 

    bigimageshow(brgb(displayRegionNum)) 

    xlabel('Longitude') 

    ylabel('Latitude') 

    set(polys,'Visible','on') 

    set(polys,'Parent',gca) 

    set(polys,'Color','r') 

https://www.mathworks.com/help/releases/R2020a/images/extract-big-image-training-data-using-bigimagedatastore.html
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Fig.1: Image of one region with training set ROIs (left) and zoomed-in image region in the 

highlighted region on the left image (right). 

  

In the following code, we extract a few ROIs from the training set at random to verify that the roof 

regions have been extracted correctly. 

    figure 

    displayIndices = randi(numTrainRegions(displayRegionNum),4,1); 

    for k = 1:numel(displayIndices) 

        coords = trainCoords{displayIndices(k) + polyIndices(1) - 1}; 

        regionImg = getRegion(brgb(displayRegionNum),1, ... 

            [min(coords(:,1)) min(coords(:,2))],[max(coords(:,1)) 

max(coords(:,2))]); 

        subplot(2,2,k) 

        imshow(regionImg); 

    end 

end 



8 
 

 

Fig. 2: Sample ROIs extracted from the training set. 

 

3.3 Storing training data 

As all the training data is prepared properly, we extract each building to a separate small image file 

and place it in a training_data folder with subfolders for each material. This restructuring simplifies 

setting up the training process of a classification model. 

There are also ways to use datastore in order not to save all the images separately to disk, thus 

reducing the overhead of generating the training set up front. Instead, a datastore can read chunks 

from the image file of each region only as needed during training. However, this approach will likely 

be slower during training time. 

If the training_data folder already exists, skip this step and simply load the saved training data. 

if exist("training_data","dir")   

     

    load(fullfile("training_data","training_data")); 

Else, create a new folder with all the training data, including subfolders for each material label. 

NOTE: If changing the training set (e.g. changing the number of regions), we recommend deleting 

any existing training_data folder to force the folder to be recreated. 

 

https://www.mathworks.com/help/releases/R2020a/matlab/ref/datastore.html
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else 

    mkdir("training_data") 

    cd training_data 

     

    materialCategories = categories(trainMaterial); 

     

    for k = 1:numel(materialCategories) 

        mkdir(materialCategories{k}) 

    end 

    cd .. 

Extract training images based on the ROIs and save each image to its corresponding material 

subfolder (NOTE: This will take some time). 

    regionIdx = 1; 

     

    for k = 1:numTrain 

Increment the index of regions as we loop through the training set to ensure we are referring to the 

correct image file when extracting regions. 

        if k > numTrainRegionsCumulative(regionIdx) 

            regionIdx = regionIdx + 1; 

        end 

In this step, we simply use the lower left and upper right coordinates of the building polygon to 

segment a rectangular region from the image to extract individual buildings for training. 

        coords = trainCoords{k}; 

         

        regionImg = getRegion(brgb(regionIdx),1, ... 

            [min(coords(:,1)) min(coords(:,2))], ... 

            [max(coords(:,1)) max(coords(:,2))]); 

         

        imgFilename = fullfile("training_data", ... 

            string(trainMaterial(k)), ... 

            trainID{k} + ".png"); 

         

        imwrite(regionImg,imgFilename); 

    end  

Save the trainID, trainMaterial, and trainCoords variables to a MAT-file to refer to them later 

without regenerating all the training data. 
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    save(fullfile("training_data","training_data"), ... 

        "trainID","trainMaterial","trainCoords") 

end 

 

3.4 Creating and storing test data 

Just as we did with the training data, we now parse the test data GeoJSON files and save the data 

and images to a test_data folder. 

The test set consists of two pieces of information that can be parsed from the GeoJSON files for 

each region: 

1. The building ID 

2. The building polygon coordinates (in latitude-longitude points) 

If the folder already exists, skip this step and simply load the saved test data. 

if exist("test_data","dir")   

    load(fullfile("test_data","test_data")); 

Else, create a new folder with all the test data. 

NOTE: If changing the test set (e.g. changing the number of regions), we recommend deleting any 

existing test_data folder to force the folder to be recreated. 

else 

    mkdir("test_data") 

First, we set up bigimage variables for all regions with test labels (which are all except "Castries" 

and "Gros Islet"). 

    regionNames = ["borde_rural" "borde_soacha" ... 

        "mixco_1_and_ebenezer" "mixco_3" "dennery"]; 

     

    for idx = 1:numel(regionNames) 

         

        bimg = bigimage(which(regionNames(idx) + "_ortho-cog.tif")); 

        brgb(idx) = apply(bimg,1, @separateChannels,'UseParallel',true); 

         

        fid = fopen(regionNames(idx) + "-imagery.json"); 

        imageryStructs(idx) = jsondecode(fread(fid,inf,'*char')'); 

        fclose(fid); 

         

        for k = 1:numel(brgb(idx).SpatialReferencing) 

             

            % Longitude limits 
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            brgb(idx).SpatialReferencing(k).XWorldLimits = ... 

                [imageryStructs(idx).bbox(1) imageryStructs(idx).bbox(3)]; 

             

            % Latitude limits 

            brgb(idx).SpatialReferencing(k).YWorldLimits = ... 

                [imageryStructs(idx).bbox(2) imageryStructs(idx).bbox(4)]; 

        end 

    end 

     

    clear bimg 

Next, we are open the GeoJSON file of each region with test labels, read it and decode the files 

using the jsondecode function. 

    for idx = 1:numel(regionNames) 

         

        fid = fopen("test-" + regionNames(idx) + ".geojson"); 

        testStructs(idx) = jsondecode(fread(fid,inf,'*char')'); 

        fclose(fid); 

         

    end 

Once we have all the values in the testStructs array, we concatenate all the structures together 

and get a total number of test set elements. 

    numTestRegions = arrayfun(@(x)sum(length(x.features)),testStructs); 

    numTestRegionsCumulative = cumsum(numTestRegions); 

    numTest = sum(numTestRegions); 

    testStruct = cat(1, testStructs.features); 

Next, we create placeholder arrays for the ID and coordinates. 

    testID = cell(numTest,1);         % Test data ID 

    testCoords = cell(numTest,1);     % Test data coordinates 

Loop through all test data elements. 

    regionIdx = 1; 

    for k = 1:numTest 

Extract the ID and coordinates of each ROI. 

        testID{k} = testStruct(k).id; 

        coords = testStruct(k).geometry.coordinates; 

        if iscell(coords) 

            coords = coords{1}; 

https://www.mathworks.com/help/releases/R2020a/matlab/ref/datastore.html
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        end 

        testCoords{k} = squeeze(coords); 

Increment the index of regions as we loop through the training set to ensure we refer to the correct 

region. 

        if k > numTestRegionsCumulative(regionIdx) 

            regionIdx = regionIdx + 1; 

        end 

Correct for coordinate convention by flipping the Y image coordinates of the building region 

coordinates. 

        testCoords{k}(:,2) = 

brgb(regionIdx).SpatialReferencing(1).YWorldLimits(2) - ... 

            (testCoords{k}(:,2)-

brgb(regionIdx).SpatialReferencing(1).YWorldLimits(1)); 

    end 

Clear the test data structures since they have now been parsed into individual arrays. 

    clear testStruct testStructs 

Extract training images based on the ROIs and save each image to its corresponding material 

subfolder (NOTE: This will take some time). 

    regionIdx = 1; 

    for k = 1:numTest 

Increment the index of regions as we loop through the test set to ensure we refer to the correct 

image file when extracting regions. 

        if k > numTestRegionsCumulative(regionIdx) 

            regionIdx = regionIdx + 1; 

        end 

In this step, we simply use the lower left and upper right coordinates of the building polygon to 

segment a rectangular region from the image to extract individual buildings for test. 

        coords = testCoords{k}; 

        regionImg = getRegion(brgb(regionIdx),1,[min(coords(:,1)) 

min(coords(:,2))], ... 

            [max(coords(:,1)) max(coords(:,2))]); 

        imgFilename = fullfile("test_data",testID{k} + ".png"); 

        imwrite(regionImg,imgFilename); 

    end 



13 
 

Save the testID and testCoords variables to a MAT-file to refer to them later without regenerating 

all the test data. 

    save(fullfile("test_data","test_data"),"testID","testCoords") 

end 

 

3.5 Managing training data with datastore 

First, we create an imageDatastore for the training_data folder. This datastore is used to 

manage a collection of image files, where each individual image fits into memory, but the entire 

collection of images does not necessarily fit.  

Image augmentation helps to prevent overfitting of a neural network if only a small amount of labeld 

training data is available. To further augment and preprocess the data images we recommend 

looking at the following resources: 

• Preprocess images for deep learning 

• Augment images for deep learning workflows using Image Processing Toolbox 

imds = imageDatastore("training_data","IncludeSubfolders",true, ... 

    "FileExtensions",".png","LabelSource","foldernames") 

imds =  
  ImageDatastore with properties: 
 

                       Files: { 
                              
'C:\Users\scastro\Desktop\training_data\concrete_cement\7a1c66f6.png'; 

                              
'C:\Users\scastro\Desktop\training_data\concrete_cement\7a1c6d7c.png'; 

                              
'C:\Users\scastro\Desktop\training_data\concrete_cement\7a1c7646.png' 
                               ... and 10353 more 

                              } 
                      Labels: [concrete_cement; concrete_cement; concrete_cement ... and 

10353 more categorical] 
    AlternateFileSystemRoots: {} 
                    ReadSize: 1 

                     ReadFcn: @readDatastoreImage 

  

Explore the distribution of all five materials among sample buildings. Notice that the number of 

samples for each material can be quite different, which means the classes are not balanced. This 

could affect the performance of the model if not addressed properly, since this may bias the model to 

predict materials that are more frequent in the training set. 

labelInfo = countEachLabel(imds) 

labelInfo = 5×2 table  

https://www.mathworks.com/help/releases/R2020a/matlab/ref/matlab.io.datastore.imagedatastore.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/preprocess-images-for-deep-learning.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/image-augmentation-using-image-processing-toolbox.html
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Table 1: Identified labels and the frequency of the respective roof material classes. 

  Label Count 

1 concrete_cement 497 

2 healthy_metal 5544 

3 Incomplete 660 

4 irregular_metal 3632 

5 Other 23 

 

4 Training a neural network using transfer learning 

Transfer learning is commonly used in deep learning applications: Taking a pretrained network and 

using it as a starting point to learn a new task. Fine-tuning a network with transfer learning is usually 

much faster and easier than training a network with randomly initialized weights from scratch. 

Learned features can be quickly transferred to a new task using a smaller number of training 

images. 

4.1 Configuring a pretrained network for transfer learning 

In this example, we use the ResNet-18 neural network as a baseline for our classifier. 

NOTE: On the first run, the Deep Learning Toolbox Model for ResNet-18 Network support package 

needs to be downloaded from  

net = resnet18; 

To retrain ResNet-18 to classify new images, we replace the last fully connected layer and the final 

classification layer of the network. In ResNet-18, these layers have the names 'fc1000' and 

'ClassificationLayer_predictions', respectively. We set the new fully connected layer to have 

the same size as the number of classes in the new data set. To learn faster in the new layers than in 

the transferred layers, we increase the learning rate factors of the fully connected layer using the 

'WeightLearnRateFactor' and 'BiasLearnRateFactor' properties. 

numClasses = numel(categories(imds.Labels)); 

lgraph = layerGraph(net); 

 

newFCLayer = fullyConnectedLayer(numClasses,'Name','new_fc', ... 

    'WeightLearnRateFactor',10,'BiasLearnRateFactor',10); 

 

lgraph = replaceLayer(lgraph,'fc1000',newFCLayer); 

 

newClassLayer = classificationLayer('Name','new_classoutput'); 

lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer); 

https://www.mathworks.com/help/releases/R2020a/deeplearning/ug/train-deep-learning-network-to-classify-new-images.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/resnet18.html
https://www.mathworks.com/matlabcentral/fileexchange/68261-deep-learning-toolbox-model-for-resnet-18-network
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We view the modified network using the analyzeNetwork function. To visialize and interactively 

modify the network architecture, we can also open it using the Deep Network Designer app. 

analyzeNetwork(lgraph); 

 

 

Fig. 3: Visualization of the architecture of ResNet-18 neural network. 

 

4.2 Setting up training options 

We configure the image datastore to use the input image size required by the neural network. To do 

this, we register a custom function called readAndResize (which can be found at the end of this 

script) and set it as the ReadFcn of the datastore. 

inputSize = net.Layers(1).InputSize; 

 

% Refers to a helper function at the end of this script. 

imds.ReadFcn = @(im)readAndResize(im,inputSize); 

We split the training data into training and validation sets. Note that this is randomly selecting a split. 

Further options to ensure that classes are balanced can be found in the functionsplitEachLabel. 

[imdsTrain,imdsVal] = splitEachLabel(imds,0.7,"randomized"); 

https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/analyzenetwork.html
https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/deepnetworkdesigner-app.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/matlab.io.datastore.imagedatastore.spliteachlabel.html
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Next, we specify the training options, including mini-batch size and validation data. Setting 

InitialLearnRate to a small value slows down learning in the transferred layers. In the previous 

section, we increased the learning rate factors for the fully connected layer to speed up learning in 

the new final layers. This combination of learning rate settings results in fast learning only in the new 

layers and slower learning in the other layers. 

Refer to the documentation for trainingOptions for different options to improve the training. 

% Validation frequency 

fVal = floor(numel(imdsTrain.Files)/(32*2)); 

 

options = trainingOptions('sgdm', ... 

    'MiniBatchSize',32, ... 

    'MaxEpochs',5, ... 

    'InitialLearnRate',1e-4, ... 

    'Shuffle','every-epoch', ... 

    'ValidationData',imdsVal, ... 

    'ValidationFrequency',fVal, ... 

    'Verbose',false, ... 

    'Plots','training-progress'); 

 

4.3 Training a neural network 

Here, we use the image datastores, neural network layer graph, and training options to train your 

model. Note that training will take a long time using a CPU. However, MATLAB will automatically 

detect if a supported GPU  is available to automatically accelerate training. 

Set the doTraining flag below to false to load a presaved network instead for demonstration 

purposes. 

doTraining = false; 

 

if doTraining 

    netTransfer = trainNetwork(imdsTrain,lgraph,options); 

else 

    load resnet_presaved.mat 

end 

 

https://www.mathworks.com/help/releases/R2020a/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpu-support-by-release.html
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Fig. 4: Accuracy and loss during training process. 

 

5 Predicting and sharing results 

5.1 Making predictions on test set 

Once we have our trained network, we can perform predictions on our test set. To do so, first, we 

create an image datastore for the test set. 

imdsTest = imageDatastore("test_data","FileExtensions",".png"); 

imdsTest.ReadFcn = @(im)readAndResize(im,inputSize) 

imdsTest =  

  ImageDatastore with properties: 
 

                       Files: { 
                              'C:\Users\scastro\Desktop\test_data\7a44da50.png'; 
                              'C:\Users\scastro\Desktop\test_data\7a44db72.png'; 

                              'C:\Users\scastro\Desktop\test_data\7a44dc08.png' 
                               ... and 7322 more 
                              } 

    AlternateFileSystemRoots: {} 
                    ReadSize: 1 

                      Labels: {} 
                     ReadFcn: @(im)readAndResize(im,inputSize) 

  

Next, we predict labels (testMaterial) and scores (testScores) using the trained network. 

NOTE: This will take some time, but just as with training the network, MATLAB will determine 

whether a supported GPU is available and significantly speed up this process automatically. 
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[testMaterial,testScores] = classify(netTransfer,imdsTest) 

testMaterial = 7325×1 categorical 
healthy_metal       

healthy_metal       

incomplete          

irregular_metal     

healthy_metal       

incomplete          

incomplete          

irregular_metal     

healthy_metal       

incomplete          

      ⋮ 
testScores = 7325×5 single matrix 

    0.0044    0.8997    0.0012    0.0930    0.0017 

    0.0001    0.9950    0.0000    0.0047    0.0001 

    0.0565    0.0167    0.4824    0.4385    0.0058 

    0.0007    0.3847    0.0025    0.6119    0.0001 

    0.0001    0.8488    0.0017    0.1490    0.0003 

    0.0029    0.0953    0.4688    0.4307    0.0024 

    0.1648    0.0559    0.3960    0.3809    0.0024 

    0.0055    0.0132    0.2002    0.7792    0.0018 

    0.0015    0.7648    0.0099    0.2224    0.0015 

    0.4453    0.0007    0.5483    0.0051    0.0006 

      ⋮ 

The following code displays the predicted materials for a few test images. 

figure 

displayIndices = randi(numTest,4,1); 

for k = 1:numel(displayIndices) 

    testImg = readimage(imdsTest,displayIndices(k)); 

    subplot(2,2,k) 

    imshow(testImg); 

    title(string(testMaterial(displayIndices(k))),"Interpreter","none") 

end 
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Fig. 5: Predicted roof construction material classes displayed along with images of the classified roof 

for a few test images. 

 

5.2 Exporting predictions to a file 

Create a table of the results based on the IDs and prediction scores. The desired format is: 

id, concrete_cement, healthy_metal, incomplete, irregular_metal, other 

We place all the test results in a MATLAB table, which simplifies visualization and export to the 

desired file format. 

testResults = table(testID,testScores(:,1),testScores(:,2), ... 

    testScores(:,3),testScores(:,4),testScores(:,5), ... 

    'VariableNames',['id';categories(testMaterial)]) 

testResults = 7325×6 table  

  id concrete_cement healthy_metal incomplete irregular_metal ⋯ 

1 '7a4d630a' 0.0044 0.8997 0.0012 0.0930  

2 '7a4bbbd6' 0.0001 0.9950 0.0000 0.0047  

3 '7a4ac744' 0.0565 0.0167 0.4824 0.4385  

4 '7a4881fa' 0.0007 0.3847 0.0025 0.6119  

5 '7a4aa4a8' 0.0001 0.8488 0.0017 0.1490  

6 '7a514434' 0.0029 0.0953 0.4688 0.4307  

7 '7a485f72' 0.1648 0.0559 0.3960 0.3809  

8 '7a4b8d32' 0.0055 0.0132 0.2002 0.7792  
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  id concrete_cement healthy_metal incomplete irregular_metal ⋯ 

9 '7a47eb3c' 0.0015 0.7648 0.0099 0.2224  

10 '7a4be3ae' 0.4453 0.0007 0.5483 0.0051  

11 '7a46a330' 0.0000 0.9991 0.0000 0.0009  

12 '7a481620' 0.4060 0.1086 0.1759 0.3084  

13 '7a49c678' 0.0004 0.9917 0.0008 0.0064  

14 '7a4ea044' 0.1865 0.2137 0.4766 0.0862  

⋮       

 

Finally, we write the results to a CSV file. 

writetable(testResults,'testResults.csv'); 

 

6 Resources on Deep Learning 

The Deep Learning model discussed here served as a simple proof of concept – the baseline or 

benchmark model. Further adjustment to the model architecture and hyperparameters, such as the 

various training options, are considered to significantly improve the performance of the model in 

terms of accuracy. For further information on how MATLAB and Deep Learning are used in the field 

of geosciences, refer to the following resources: 

Live webinar: 

• Deep Learning for Geosciences with MATLAB made easy (13 May, 2020, 10:30 – 12:00 

CEST) 

Web resources: 

• MATLAB for earth, ocean and atmospheric sciences 

• MATLAB for Deep Learning 

Free, browser-based, hands-on trainings: 

• MATLAB Onramp 

• Deep Learning Onramp 

  

https://www.mathworks.com/company/events/seminars/deep-learning-for-geosciences-with-matlab-made-easy-3090396.html
https://www.mathworks.com/solutions/earth-ocean-atmospheric-sciences.html
https://www.mathworks.com/solutions/deep-learning.html
https://www.mathworks.com/learn/tutorials/matlab-onramp.html
https://www.mathworks.com/learn/tutorials/deep-learning-onramp.html
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Appendix: Helper functions 

Separates a bigimage into its RGB (first to third) and mask (fourth) channels. 

function [rgb, m] = separateChannels(rgbm) 

    rgb = rgbm(:,:,1:3); 

    m = logical(rgbm(:,:,4)); 

end 

Read and resize an image to a desired input size. 

function im = readAndResize(filename,sz) 

    im = imresize(imread(filename),sz(1:2)); 

end 
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