Integrating model and data over the Southern Ocean (SO) at the Last Glacial Maximum to better understand the sea-ice cover

F. Lhardy¹ (fanny.lhardy@lsce.ipsl.fr), N. Bouttes¹, D.M. Roche¹,², X. Crosta¹

1. Model-data comparison: sea-surface temperatures and sea ice

PI

PMIP4 P1.1
PMIP T1.1
PMIP P1.1
PMIP P1.1 windyc3
Warm PMIP2
New PMIP2
Cold PMIP2

Simulation

PI
PMIP4 P1.1
PMIP T1.1
PMIP P1.1
PMIP P1.1 windyc3

Topography

Semi-automated bathymetry

Sensitivity experiment

+0.6 Sv around Antarctica
x3 wind tension on ice
parametrization of the sinking of brines
modified albedo profiles

Inverse methodology:
What surface conditions should be simulated in the SO to agree well with the proxy data?

1. Model-data comparison: sea-surface temperatures and sea ice

PI

RMSE = 3.1

a

c

e

Fig. 1: Global mean temperature anomaly (°C).

Grey bar - estimate of Annan and Hargreaves [2013]

2. Deep ocean circulation: streamfunctions

A set of simulations displaying contrasting climates (due to different boundary conditions and experimental setting)

What would be the associated impact on deep ocean circulation?

RMSE = 3.6

b

d

Fig. 2: Austral winter (a) and summer (b) SSTs in a model vs data diagram. 1:1 line - perfect model-data agreement with WOA SST data. Marker color - latitude of the grid cell found nearest the core coordinates.

Fig. 3: Winter (c) and summer (d) sea-ice edges. Data points - sea-ice concentration (%) from Schweitzer [1995].

Fig. 4: Winter (e) and summer (f) sea-ice concentration (%) from Schweitzer [1995].

Fig. 5: Streamfunctions in the Atlantic (North of 32°S) and Southern Ocean (South of 32°S).

2. Deep ocean circulation: streamfunctions

- Systematic (and consistent) biases in regional and seasonal patterns of the SO:

<table>
<thead>
<tr>
<th>SST</th>
<th>SEA ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm bias in the Atlantic & Indian sectors (~40-50°S), especially in summer</td>
<td>Round sea-ice edge (proxies suggest an oval-shaped distribution)</td>
</tr>
<tr>
<td>Some simulations are slightly too cold at ~60°S in the Pacific sector</td>
<td>Underestimated sea-ice seasonality</td>
</tr>
</tbody>
</table>

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell.

However the experimental setting has here a larger impact than surface conditions, or boundary conditions.

-
Integrating model and data over the Southern Ocean (SO) at the Last Glacial Maximum to better understand the sea-ice cover

F. Lhardy¹ (fanny.lhardy@lsce.ipsl.fr), N. Bouttes¹, D.M. Roche¹,², X. Crosta³

1. Model-data comparison: sea-surface temperatures and sea ice

- Cold PMIP2
- Warm PMIP2
- New PMIP2
- PMIP P1.1
- PMIP P1.1 windxy3
- PMIP P1.1 br0.8
- PMIP P1.1 PI
- PMIP P1.1 and ET

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Topography</th>
<th>Semi-automated bathymetry</th>
<th>Sensitivity experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>ICE-6G-C</td>
<td></td>
<td>+0.6 Sv around Antarctica</td>
</tr>
<tr>
<td>Cold PMIP2</td>
<td>etopo1.1</td>
<td></td>
<td>x3 wind tension on ice</td>
</tr>
<tr>
<td></td>
<td>ICE-5G</td>
<td></td>
<td>parametrization of the sinking of brines</td>
</tr>
<tr>
<td></td>
<td>GLAC-1D</td>
<td></td>
<td>modified albedo profiles</td>
</tr>
</tbody>
</table>

A set of simulations displaying contrasting climates (due to different boundary conditions and experimental setting)

Inverse methodology:
What surface conditions should be simulated in the SO to agree well with the proxy data?

RMSE = 4.2

Systematic (and consistent) biases in regional and seasonal patterns of the SO:

- Warm bias in the Atlantic & Indian sectors (~40°-50°S), especially in summer
- Round sea-ice edge (proxies suggest an oval-shaped distribution)
- Some simulations are slightly too cold at ~60°S in the Pacific sector
- Underestimated sea-ice seasonality

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell.
However the experimental setting has here a larger impact than surface conditions, or boundary conditions.

What would be the associated impact on deep ocean circulation?

1. Model-data comparison: sea-surface temperatures and sea ice

RMSE = 3.8

2. Deep ocean circulation: streamfunctions

SU
d
Fig. 2: Austral winter (a) and summer (b) SSTs in a model vs data diagram. 1:1 line - perfect model-data agreement. Marker color - latitude of the grid cell found nearest the core coordinates. Grey lines - uncertainties associated with the SST data (MARGO project members [2009])

Fig. 3: Winter (c) and summer (d) sea-ice edges. Data points – number of proxies indicating sea-ice presence. Red line – likely delimitation of winter sea-ice presence according to proxy data (compiled from Gersonde et al. [2005], Allen et al. [2011], Ferry et al. [2015], Benz et al. [2016], Xiao et al. [2016], Nair et al. [2019])

Fig. 4: Winter (e) and summer (f) sea-ice areas (10⁶ km²). Grey bars - LGM estimates from Roche et al. [2012]

Fig. 5: Streamfunctions in the Atlantic (North of 32°S) and Southern Ocean (South of 32°S)

Fig. 1: Global mean temperature anomaly (°C). Grey bar - estimate of Annan and Hargreaves [2013]

RMSE = 4.2
RMSE = 3.8

2015-18
Integrating model and data over the Southern Ocean (SO) at the Last Glacial Maximum to better understand the sea-ice cover

F. Lhardy¹ (fanny.lhardy@lsce.ipsl.fr), N. Bouttes¹, D.M. Roche¹,², X. Crosta³

1. Model-data comparison: sea-surface temperatures and sea ice

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Topography</th>
<th>Semi-automated bathymetry</th>
<th>Sensitivity experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td>+0.6 Sv around Antarctica</td>
</tr>
<tr>
<td>PMIP-P1.1, Ross6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMIP-P1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMIP-P1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMIP-P1.1</td>
<td></td>
<td></td>
<td>a3 wind tension on ice</td>
</tr>
<tr>
<td>PMIP-P1.1</td>
<td></td>
<td></td>
<td>parametrization of the sinking of brines</td>
</tr>
<tr>
<td>PMIP-P1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMIP-P1.1, Ross6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm PMIP2</td>
<td></td>
<td></td>
<td>modified albedo profiles</td>
</tr>
<tr>
<td>New PMIP2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold PMIP2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What would be the associated impact on deep ocean circulation?

A set of simulations displaying contrasting climates (due to different boundary conditions and experimental setting)

Inverse methodology:
What surface conditions should be simulated in the SO to agree well with the proxy data?

Systematic (and consistent) biases in regional and seasonal patterns of the SO:

| SST bias in the Atlantic & Indian sectors (~40°-50°S), especially in summer |
| Round sea-ice edge (proxies suggest an oval-shaped distribution) |
| Some simulations are slightly too cold at ~60°S in the Pacific sector |
| Underestimated sea-ice seasonality |

Fig. 1: Global mean temperature anomaly (°C)

Grey bar - estimate of Annan and Hargreaves [2013]

Fig. 5: Streamfunctions in the Atlantic (North of 32°S) and Southern Ocean (South of 32°S)

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell.
However the experimental setting has here a larger impact than surface conditions, or boundary conditions.

Fig. 2: Austral winter (a) and summer (b) SSTs in a model vs. data diagram. 1:1 line - perfect model-data agreement. Marker color - Latitude of the grid cell found nearest the core coordinates. Grey lines - uncertainties associated with the SST data (MARGO project members [2009])

Fig. 3: Winter (c) and summer (d) sea-ice edges. Data points - number of proxies indicating sea-ice presence. Red line - likely delimitation of winter sea-ice presence according to proxy data (compiled from Gersonde et al. [2005], Allen et al. [2011], Ferry et al. [2015], Benz et al. [2016], Xiao et al. [2016], Nair et al. [2019])

Fig. 4: Winter (e) and summer (f) sea-ice areas (10⁶ km²). Grey bars - LGM estimates from Roche et al. [2012]

Fig. 6: Semi-automated bathymetry simulation +0.6 Sv around Antarctica
Integrating model and data over the Southern Ocean (SO) at the Last Glacial Maximum to better understand the sea-ice cover

F. Lhardy\(^1\) (fanny.lhardy@lsce.ipsl.fr), N. Bouttes\(^1\), D.M. Roche\(^1,2\), X. Crosta\(^3\)

1. Model-data comparison: sea-surface temperatures and sea ice

Fig. 1: Global mean temperature anomalies (°C) across PMIP2 models.

- Cold PMIP2
- Warm PMIP2
- New PMIP2

Table: Simulation comparison

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Topography</th>
<th>Sensitivity experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>PMIP P1.1</td>
<td>Standard</td>
<td>+0.6 Sv around Antarctica</td>
</tr>
<tr>
<td>PMIP P1.1</td>
<td>ET0</td>
<td>x3 wind tension on ice</td>
</tr>
<tr>
<td>PMIP P1.1</td>
<td>B0.8</td>
<td>Parametrization of the sinking of brines</td>
</tr>
<tr>
<td>PMIP P1.1</td>
<td>Wind x3</td>
<td></td>
</tr>
<tr>
<td>PMIP P1.1</td>
<td>B0.8</td>
<td></td>
</tr>
<tr>
<td>ICE-5G</td>
<td>Modified</td>
<td></td>
</tr>
<tr>
<td>ICE-6G-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLAC-1D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2: Austral winter (a) and summer (b) SSTs in a model vs data diagram. 1:1 line - perfect model-data agreement. Marker color - latitude of the grid cell found nearest the core coordinates. Grey lines - uncertainties associated with the SST data (MARGO project members [2009]).

Inverse methodology:

What surface conditions should be simulated in the SO to agree well with the proxy data?

2. Deep ocean circulation: streamfunctions

Fig. 3: Winter (c) and summer (d) sea-ice edges. Data points - number of proxies indicating sea-ice presence. Red line - likely delimitation of winter sea-ice presence according to proxy data compiled from Gersonde et al. [2005], Allen et al. [2011], Ferry et al. [2015], Benz et al. [2016], Xiao et al. [2016], Nair et al. [2019].

Systematic (and consistent) biases in regional and seasonal patterns of the SO:

- Warm bias in the Atlantic & Indian sectors (~40°-50°S), especially in summer
- Round sea-ice edge (proxies suggest an oval-shaped distribution)
- Some simulations are slightly too cold at ~60°S in the Pacific sector
- Underestimated sea-ice seasonality

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell.

However the experimental setting has here a larger impact than surface conditions, or boundary conditions.
Integrating model and data over the Southern Ocean (SO) at the Last Glacial Maximum to better understand the sea-ice cover

F. Lhardy¹ (fanny.lhardy@lsce.ipsl.fr), N. Bouttes¹, D.M. Roche¹,², X. Crosta¹

1. Model-data comparison: sea-surface temperatures and sea ice

PMIP4 T1.1

Inverse methodology:
What surface conditions should be simulated in the SO to agree well with the proxy data?

A set of simulations displaying contrasting climates (due to different boundary conditions and experimental setting)

What would be the associated impact on deep ocean circulation?

2. Deep ocean circulation: streamfunctions

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell. However the experimental setting has here a larger impact than surface conditions, or boundary conditions.
A set of simulations displaying contrasting climates (due to different boundary conditions and experimental setting).

Inverse methodology:
What surface conditions should be simulated in the SO to agree well with the proxy data?

PMIP4 P1.1

1. Model-data comparison: sea-surface temperatures and sea ice

PMIP4 P1.1

- SST
- Sea Ice
- RMSE = 4.0

- SST
- Sea Ice
- RMSE = 4.2

2. Deep ocean circulation: streamfunctions

- Atlantic
- Southern Ocean
- Streamfunctions

RMSE = 4.0
RMSE = 4.2

Systematic (and consistent) biases in regional and seasonal patterns of the SO:

<table>
<thead>
<tr>
<th>SST</th>
<th>SEA ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm bias in the Atlantic & Indian sectors (~40°-50°S)</td>
<td>Round sea-ice edge (proxies suggest an oval-shaped distribution)</td>
</tr>
<tr>
<td>Underestimated sea-ice seasonality</td>
<td></td>
</tr>
</tbody>
</table>

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell.
However the experimental setting has here a larger impact than surface conditions, or boundary conditions.
Integrating model and data over the Southern Ocean (SO) at the Last Glacial Maximum to better understand the sea-ice cover

F. Lhardy, Fanny.Lhardy@lscie.ipsl.fr, N. Bouttes, D.M. Roche, X. Crosta

1. Model-data comparison: sea-surface temperatures and sea ice

- PMIP4 P1.1 windx3
- PMIP4 P1.1 bsl0.6
- PMIP4 T1.1
- Warm PMIP2
- New PMIP2
- Cold PMIP2

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Topography</th>
<th>Sensitivity experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Iberia</td>
<td>+0.6 Sv around Antarctica</td>
</tr>
<tr>
<td>PMIP4 P1.1 windx3</td>
<td>Semi-automated bathymetry</td>
<td>x3 wind tension on ice</td>
</tr>
<tr>
<td>PMIP4 P1.1 bsl0.6</td>
<td></td>
<td>parametrization of the sinking of brines</td>
</tr>
<tr>
<td>PMIP4 P1.1</td>
<td></td>
<td>modified albedo profiles</td>
</tr>
</tbody>
</table>

Inverse methodology:
What surface conditions should be simulated in the SO to agree well with the proxy data?

1. Deep ocean circulation: streamfunctions

What would be the associated impact on deep ocean circulation?

Systematic (and consistent) biases in regional and seasonal patterns of the SO:

<table>
<thead>
<tr>
<th>SST</th>
<th>SEA ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm bias in the Atlantic & Indian sectors (~40-50°S), especially in summer</td>
<td>Round sea-ice edge (proxies suggest an oval-shaped distribution)</td>
</tr>
<tr>
<td>Some simulations are slightly too cold at ~60°S in the Pacific sector</td>
<td>Underestimated sea-ice seasonality</td>
</tr>
</tbody>
</table>

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell.
However the experimental setting has here a larger impact than surface conditions, or boundary conditions.
Integrating model and data over the Southern Ocean (SO) at the Last Glacial Maximum to better understand the sea-ice cover

F. Lhardy¹ (fanny.lhardy@lsce.ipsl.fr), N. BOUTTES¹, D.M. ROCHE¹,², X. CROSTA³

1. Model-data comparison: sea-surface temperatures and sea ice

PMIP4 P1.1 hos0.6
PMIP4 P1.1 windx3
PMIP4 P1.1 windx3
PMIP4 P1.1 T1.1
PMIP4 P1.1
New PMIP2
Warm PMIP2
Cold PMIP2

What would be the associated impact on deep ocean circulation?

A set of simulations displaying contrasting climates (due to different boundary conditions and experimental setting)

Inverse methodology:
What surface conditions should be simulated in the SO to agree well with the proxy data?

Systematic (and consistent) biases in regional and seasonal patterns of the SO:

<table>
<thead>
<tr>
<th>SST</th>
<th>SEA ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm bias in the Atlantic & Indian sectors (~40-50°S), especially in summer</td>
<td>Round sea-ice edge (proxies suggest an oval-shaped distribution)</td>
</tr>
<tr>
<td>Some simulations are slightly too cold at ~60°S in the Pacific sector</td>
<td>Underestimated sea-ice seasonality</td>
</tr>
</tbody>
</table>

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell.

However the experimental setting has here a larger impact than surface conditions, or boundary conditions.
Integrating model and data over the Southern Ocean (SO) at the Last Glacial Maximum to better understand the sea-ice cover

F. Lhardy¹ (fanny.lhardy@lsce.ipsl.fr), N. Bouttes¹, D.M. Roche², X. Crosta¹

1. Model-data comparison: sea-surface temperatures and sea ice

- PMIP4 P1.1 boro.8
- PMIP4 T1.1
- PMIP4 P1.1
- PMIP4 P1.1 windys3
- Warm PMIP2
- New PMIP2
- Cold PMIP2

1.1 Semi-automated bathymetry

2. Deep ocean circulation: streamfunctions

- PMIP4 P1.1 boro.8
- Cold PMIP2
- Warm PMIP2
- New PMIP2
- PMIP4 T1.1
- PMIP4 P1.1

Inverse methodology:
What surface conditions should be simulated in the SO to agree well with the proxy data?

A set of simulations displaying contrasting climates (due to different boundary conditions and experimental setting)

2.1. What would be the associated impact on deep ocean circulation?

Systematic (and consistent) biases in regional and seasonal patterns of the SO:

- Warm bias in the Atlantic & Indian sectors (~40-50°S), especially in summer
- Round sea-ice edge (proxies suggest an oval-shaped distribution)
- Some simulations are slightly too cold at ~60°S in the Pacific sector
- Underestimated sea-ice seasonality

A colder SO is broadly associated with an enhanced convection in the SO and NADW cell.
However the experimental setting has here a larger impact than surface conditions, or boundary conditions.