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TERRESTRIAL ENVIRONMENTAL OBSERVATORIES

River water quality modeling using
continuous high frequency data
allows disentangling whole-stream
nitrogen uptake and release
pathways
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Research Questions TERENO =

TERRESTRIAL ENVIRONMENTAL OBSERVATORIES

Q1: How can the combination of emerging high frequency monitoring techniques and water quality
modeling support continuous quantification of instream N uptake pathways?

Q2: What are instream N uptake efficiency and pathways over the 5 years and their inter-annual
comparison?

Q3: What are their seasonal patterns?

Q4: What are their characteristics at the extreme low flow in summer 20187
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Model Name: WASP7.5.2 Advanced Eutrophication Module
Model Domain: 27.4-km 5% river
Time Range: 5 years
Time Step:<0.01d
Model Setup:
= Flow Boundary
= Upper: 15-min interval Q at GGL
= Lateral: calculated daily discharge
= Water Quality Boundary
= Upper: 15-min interval data for DO, NO3, Chl-a at
GGL, monthly data for other variables
= Lateral: calculated daily NO3, bi-monthly data at
routine WQ stations for other variables
Model Calibration:
= Data: 15-min interval simulations vs measurements at STF
= Step 1: Q
= Step 2: Phytoplankton Chl-a & periphyton biomass carbon
= Step 3: Diurnal DO—>GPP (for assimilatory uptake)
= Step 4: NO3 (for denitrification)
N Uptake Calculation: At daily, seasonal, annual & 5-y scales.

® Water Quality Probe

@ Gauging Station

® Routine Water Quality Station
mmmm | ower Bode Main Stream
—— Lower Bode Tributary
— Bode Main Stream
—— Bode Stream Network
[ Bode Catchment Boundary

Fig. 1 Site description of Lower Bode
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Simulation vs Measurement (Q1)

-~ Not only compare state variables, but also process fluxes!

v In this case, GPP from measurement is the hidden process

information in high frequency data to support quantification
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v" In spring, GPP hy is dominant. In summer,
GPP by Periphyton is dominant.
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Fig. 3 Simulated and observed GPP comparison
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Fig. 2 State variable comparison
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Instream DIN Uptake on 5-Year and Annual Scales (Q2)
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Seasonal Patterns (Q3)
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Fig. 6 Seasonal DIN budgetin Lower Bode (average results from 2014 to 2018, in kgN)
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@pginning of the seasons is set at: Spring - 1. Mar, summer - 1Jun; autumn - 1 September and winter - 1 December.

DIN Uptake Amount
Seasonal Ranking:
Summer > Spring >

Autumn > Winter

Efficiency Seasonal
Ranking : Summer (4.6%)
> Spring (1.8%) > Autumn
(0.65%) > Winter (0.04%)
Spring + Summer: The
sum of net DIN uptake
amounts accounted for

91% of total uptake
amount of the year.
Spring:

is dominant (52%).
Summer: Periphyton
uptake is dominant (63%)
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At Extreme Low Flow (Q4)

The DIN Uptake rates at extreme
low flow in 2018 was not especially
higher than those over the same
period in the previous years. They
were lower than those during the
spring of 2017 and 2018 when
phytoplankton bloomed.

However, the DIN uptake efficiency
during this period was significantly
higher than usual over the 5 years,
with the highest value of ~30%.

Denitrification contributed half of
the net uptake (~15%) when the
uptake efficiency was highest at this
stage.

N

Fig. 7a DIN Net Uptake rate on a daily scale
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Fig. 7b Net DIN uptake efficiency on a daily scale
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= Our model performs satisfactorily in mimicking patterns of NO3, DO, Chl-a, GPP, etc., one of the few
model testing with both simulated and measured state variables at such high temporal resolution (15-min
interval) with such time span (5-year).

= QOur study highlights the value of high frequency data to support river water quality modeling allowing
continuous quantification of instream N uptake pathways (phytoplankton uptake, periphyton uptake &
denitrification).

Thank youl!
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