(EGUss=, 2020

MODELING THE SEA SURFACE WAMES
IN HURRICANE BASING, ON, SElLF-
SIMHLARITY CONCERT

Maria Yurovskaya'?,
Vladimir Kudryavtsev!?,
Bertrand Chapron??

IMarine Hydrophysical Institute of RAS,
Sevastopol, Russia

?Russian State Hydrometeorological University,
Saint Petersburg, Russia

Institut Francais de Recherche pour I"Exploitation de la Mer,

Plouzané, France
() B




Contents
Motivation

Model for wave development and propagation in
varying wind field

@ Model application to idealized situations: uniform
wind, convergent, divergent wind
Stationary cyclone-type wind field

Waves in moving tropical cyclone (TC). Effect of
translation velocity

TC parameterization

Conclusions




. J 1

viotivation
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Observation (satellites, buoy, aircraft) and modeling (e.g.
WAWEWATCH III) of waves in TC is critical for forecasting and
fundamental study

Classical self-similar theory of wave development (Kitaigorodskii,
1962) demonstrated practical capabilities to reproduce surface wave

characteristics, even under extreme wind conditions (e.g. Young,
1988, Young, 2013, Kudryavtsev et al., 2015).

However, fields of surface waves under these extremes can rapidly
become complex and characterized by multiple wave systems,

limiting the direct use of the 1D self-similar fetch-laws (e.g. Hwang et
al., 2017, Hwang and Walsh, 2018).

In moving TC surface waves in the right sector obtain “unlimited”
fetch (group velocity resonance) and can be “trapped” by TC

It leads to typical asymmetry - appearance of waves, much larger than
ones predicted by a “standard” fetch-law estimates using TC wind
speed and its radius as a fetch

Antcl_gular wave distributions in different TC parts are complicated :
mult '

imodal wave systems, some waves are moving windward ©_ @



The aim of this work is to develop a 2D parametric model for wave
evolution in non-uniform wind field, based on

1) energy and momentum conservation laws (Hasselmann et al., 1976)
and

2) self-similarity concept relating non-dimensional wave frequency,
wave energy and fetch (Kitaigorodskii, 1962)

and to apply this model to TC conditions




Governing Eguations

Energy and momentum conservation
(Hasselmann et al., 1976; Phillips, 1977): | E(@,¢) = Alp ~¢,)F(@) - energy spectral density

M., =k E/o=x, wE/g - momentum spectral density

OE / ot + ¢ ,0E / Ox; = SE K, = [cosg,sin ]

S =S, —S, +S, - energy source

M, 1 3t +c oM, | ax, = S

SiM =K, @S E / g - momentum source

Cyi - group velocity

=3
o t
o
o
m

m  Wind input: m Dissipation: = Non-linear interactions:
Sw = BoA(g —¢,)F (o), Wave breaking Four-wave interactions
(Miles, 1957) (Longuet-Higgins, 1969) (Hasselmann, 1962)
o= Cy (U*/C)2 COSZ((D — Q) - growth rate D= wpe(kpze / 5T2)n
BN GE6) 102  (Plant, 1982; Meirlink et al. 2003) D= J' S, dedw Energy transfer towards low
g - frequencies:
U. - friction velocity i J Edpda
. . 0S, /0w <0
If wind projection is smaller than wave phase ——
velocity (U, Cos(¢ — @, ) —C <0) === Sy =(: . <SN>~ E®
l o DIB
h, 2 ~052 S | (Zakharov, 2010;
=c,(u./c) cos’(p - — @, U, /C € o | ,2010;
=5 ( / ) . (0= )ﬁﬁ((p P oo/ )J * 02 | Badulin et al., 2007)
u |
Hﬁ(co—cvw,ulo/C)=§{1+tanh[D(COS((p—ww)f‘)—lm ° . ‘@ @ \



Governing Equations

£/ E /ox, = S° IS
O /ot + nga 8Xj =3 jjd(pd&) c, :Ich(w)da)/e
OM; /3t + ¢ ;0M, /0%, =S" | and some algebra... &= [oF (0)do e

=[cosg,,sing,]

K
‘ a)p/a_)zég/cgp:rg

el ot+xiT,de/ ox, +ed(xcTc,) | ox, = [[ S¥dgda
zII(SW -S,)deda
5 5

. I _ : : :
—o, +K/C,—wn, = ;gj‘ (- ®)S5dw - peak frequency (non-linear interactions)

Bl o

- energy growth rate (wind+dissipation)

0 0 1 : : : :
~ ¢, +xTT, 67% - %”sm((p ~p,)oS"dpdw - peak direction (wind)

Parameters in the right-hand side are derived using
1D equations (uniform wind: /6t =0,p, =@, ),
together with fetch-limited laws (Kitaigorodskii , 1962)
and then generalized to 2D equations
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Link to self-similarity =g
Energy §=eg’/u
de t + kT, 08 1 x, +ed(kT,) 1 X, =”8Edgpda) @, =@ulg
. . ﬁ )dgdo Fetch laws: a=ulc,
Right hand side: (Kitaigorodskii , 1962)
”(SW_SD)d(”dG)ZIW_D w,=a=c, X', €=cX"

Model assumption:
Dissipation is proportional to the wind input:

For the case of uniform wind:

oelot=0,¢, =@,

D/l,=y = (kZ) oo’ o(t,e)/ ox o< (g/u)a’e

q=-1/4

l,-D=we(l,-D)
[I~W— D =CerocZCOSz(goIO —qow)—(eks/gf)n]
2

Hpzl/z.éﬂanh[p(cos((ﬁp—%)a_lﬂ} M

C, and &, are constants calibrated on fetch-laws




Link to self-similarity

=eg”/u*
Peak frequency &, =wulg
r : a=ulc
ia)pﬂfjpfgia)p =—9j(a)—a)s§dw Fetch laws: p
ot OX; e (Kitaigorodskii , 1962)
Right hand side (NL interactions): ~ 5 ~ . GP
w,=a=C,X", €=CX
e-lj(w—@)sgdwz
— a-lAaN =2
e ~€ 05 / 0w _[ (0-)do For the case of uniform wind:
p
<SN>~e3 ~— oc—e‘15a)2<8g> 6e/at:O’¢P =@y
oc —a)skge2 oC —(‘:]"4a);0e2 C,,0m, | OX oc g ', %’

3

-
e_lf (w-@)S5dw=C,g w;e’

—C o2 (kze)2 2p+10g+1=0 - “magic relations”
\_ aPAP y, (Badulin et al., 2007;
Restriction for fully 3 ZakharoxZ2ell
developed waves:
Ca:CaAp : p:3/4 q:_1/4
A, =1-2sech®(10(«-0.9)) § | : G2
" : n=
C, calibrated on fetch-laws TR EETI p+44 ‘@ ® \



Spectral peak direction
Dissipation and four-wave interactions
—p, =— ”sm(go ¢,)0SEdpdo are functions of wave spectrum,
while wind input is also a function of
wave direction

l Taylor series around ¢ = @, l ‘

Integral over azimuth vanishes for Sp and Sw:
Change of wave direction is caused by wind

(Dp-l-l('

ot ‘ g&x

8 0 .
E +K'°Cga—gop [C(Daza)pHpSIn[Z(gop—goW)}]
j
) J-a)“F(a))da) )
C, =C,Cpdp” — =1.8x10"° for JONSWAP spectrum
ijwF(w)dw
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Effect of Group Velocity Divergence (Ray Fecusing)

Energy growth rate in ray Cg divergence

characteristic form: el(ﬁ c, /ol +T 6gop/8n)+a) e(l |j) l /e

ac, /6l ~ AT, /(T,At) =T, dT, /dt C,0¢0p ION=C,Ap, /| An=C G,

An - distance between neighbor characteristics

ray focusing/defocusin
yf &/def 8 A(Dp - direction difference between them

d . ~ ~
a In(Cg €)= @, ( |, — D) Gn, Gw - peak/wind direction gradient in
cross-ray direction, A /An

—

from eq. for @, :

dAgp
| dt

Caustic: An—0

Restriction for Gn
(wave is not monochromatic):

~T (A, —App) . / An

T"=2C H a’w, COS(Z(gop —gow))
= Ll An/An, } | dAn/dt=Ag,T, ﬂ

p
T An {(An/Ano)2 +(1/2-Ac, /T, )2
dG,/dt+G, /T +¢,G2 =Gy, /T

(Ac,/c,)’ =4.6x107 -JONSWAP !

G, =Ag,/An ‘@ ® \




Complete System of Equations

B d o . u System describes the development of
a X; =K;C, -wave train position surface waves under a varying wind
field in both space and time, as well as
the evolution of swell propagation in
diln(ég e) _ _Ean +o, ( i‘W B 5) - modified energy the absence of wind forcing
t
d 5 )2 .
GpCo = (kpe) - spectral peak group velocity (from eq. for frequency)
d
dt =C, o’ w,H  sin [Z(gop Bw )} - spectral peak direction

dG ,/dt+G, /T +T,G? =Gy, /T - peak direction gradient (focusing term), G, = Ag, /An
(or two eq. instead: for A¢, and An)

Wave breaking of dominant waves;
(Phillips, 1985)
Q,=¢k,'’L, D=bg'c’L

1| —> Q, <&’ (ek,’ 1 &°)°

D:a)pe(kf)e/ef) & 5



Method to solve the eguations

A wind field on a uniform grid and a initial locations of wave
trains are set

Wave characteristics at t=0: @, =3, $o =%, Ap, =0, €= U*lg°c, (alc,)™
Right-hand sides of every equation are calculated

Wave train coordinates and other parameters at ti+i=ti+dt are
obtained with the use of 4t order Runge-Kutta scheme

Starting dt~1s slowly increases to 30 min to reduce calculation

time and data amount

An array of wave train coordinates, peak frequency, energy,
direction, wave age, distance between “neighbor” characteristics

(focusing effect) at every discrete time point ‘@ ® \



Model Simulations: Uniferm Winel

Constant wind from the shore.
Effective fetch: Ucos(a)

Observed

0 50 100 150 200 250 300
Fetch, km

Max Hs inside areas around grid points vs
effective fetch in comparison with fetch law
model, & =c X"

(p=0.83, ce=5.88e-7, Babanin&Soloviev, 1998)
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Dimensionless Energy

Model Simulations: Uniferm Winel

22 - ~ 2
Model X=xg/u
2 BS98 5 4
\ . Constant Wind é =e /u

o=

Wl_nd 15 & Wind abrupt g

switched off ¢ 1.8 /
3 @, = OURG
w16
w
8 =1
5§14 Fetch laws:
§ Wind is N
g2y switched off . =a=C Xq, g =c X"

p a e
= 4
1 i \
e Ar 08 " Lr
103 104 10° 10° 103 10* 10° 10°
Dimensionless Fetch Dimensionless Fetch

Dimensionless energy and peak frequency vs dimensionless fetch.
Our model (red/black), Babanin&Soloviev, 1998 (blue).

Green line shows model evolution of energy and frequency after the
wind suddenly drops at fetch X =8-10"

1. The model provides a smooth transition from developing to fully

developed waves.
2. Swell: a rapid decay of the wave energy (much stronger than predicted by

Zakharov and Badulin, 2017) under the weakly turbulent theory, X **)

3. Swell: a moderate downshift of the peak frequency @ ©O) \
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1 | 1. Wind (16 m/s) abruptly
e 1000 decreases to 3m/s at fetch 1000 km

100
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2. Fully developed waves turn to
decaying focusing swell

3. Rays cross at fetch ~1300 km

4. In caustic point energy
temporarily grows, than rays
diverge with additional energy lose

5. Caustic effects are weakly/not
manifested in wavelength
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Convergent/Divergent Wine Effects

Gradient of wind direction
G,|=10" rad/m:

negative — divergence (blue),

positive - convergence (red)

zero - black

dashed line ---- wind abrupt (swell)

Divergence of the wind velocity forces
the wave rays to widen - additional
energy sink (decrease ~30%, and
deceleration of the frequency downshift)
Swell: rapid attenuation and shorter
peak wavelength

Wind velocity convergence forces wave
rays to concentrate (caustic), then diverge
and converge again under the action of
wind gradient (recurrent process).

Swell: wave-ray thickening is
terminated, rays diverge away from the
last caustic zone, energy rapidly
attenuates
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Stationary cyclone-type wind field

B B 2 1/2
u(r) =| (Uz +u,rf) Ru exp| — Re 1l [ iR Holland, 1980
r r 2 2
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Wind field with zero inflow angle Wind field with 20 deg inflow angle
Wind direction gradient: (Shea and Gray, 1973)
‘GW ‘ =1/r with a direction tangent to the circle Gy = —|GW |sin @,, - wave-ray focusing

Cross-ray projection: G," =0 ‘@ O, \
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Along-ray Profiles

: ) Wave breaking
Zero inflow angle 20 deg inflow angle (strong dependency on wave age)
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Radial Distributions for Different Wine Fielels

15 F

101 rrtm——tren,

Hs

Different combinations of TC radii
and maximum wind speeds: e
Rm=30, 50, 70 km, oL |
Um=30,50,70 m/s

. 400 ¢
For the same radius:
the larger the wind speed, the larger Wi
the Wavelength and HS = 200t LY, F s
100 | 43
For the same maximum wind speed: 0 : : : .
the larger the radius, the larger the RIR_
wavelength and Hs 0 .
* Vm=30m/s
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Radial Distributions (Sealed)

Different combinations of TC radii

and maximum wind speeds
(Rm=30, 50, 70 km,
Um=30, 50, 70 m/s)

Radial distributions are scaled:
Hs, = Hs(g/U_%)/ Hs,

Ay =A(g/U_ )/ A
where

p
R=R g/U_’
p=3/4,q=-1/4

Profiles almost collapse,
exhibiting self-similar shapes for
distances smaller than 2Rm

Inflow angle modifies Hs profiles
(extra energy pumping due to
cross-ray convergence)

These effects on wavelength are
less strong
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Waves in Moving TC

In coordinate system related to TC,

wave train position: i X =x"C
dt J ] 9

Typical wave train parameters for different hurricane
translation velocities, Vt
(TC is moving upwards)

i)
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by TC central part and shifted to the left (high energy).

Extra energy pumping is due to ray focusing effect.
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Dash line: Gn=0 (no focusing effects) I

Waves from up-right sector (red, blue) are “trapped”

In very fast hurricanes most waves pass downwards.

Energy intensification is in down-right TC sector.
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Wave Parameters from All Trajectories
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Wave Parameters for All Trajectories
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Wave Parameters for All Trajectories

Figure 20: Hs,Lambda_clb =R
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Wave Parameters for All Trajectorie

Figure 21: AGE,DIS
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Wave Parameters for All Trajectories
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Wave Parameters for All Trajectories
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Hs-Wavelength Angular Distributions
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Figure 3. Veclors showing the dominant wave direction  Figure 4a. A composite of all storms in the database

for three of the hurricancs. The data arc shown in a
transformed co-ondinate system moving with the hurri-
cane, with the dircction of propagation towards the top of
the page. The storm centre is shown by the open circle o
co-ordinates 0.0, The spatial co-orlinates are shown
scaled by the radius w0 maximum winds, & The system
is shown for the Northern Hemisphere (ie. anti<lockwise
circulation).

Hwang 2017, fig .11
(d)

showing the mean values of the dominant wave direction in

squares of size 1R x 1R. Areas with no vectors shown

correspond to squares where there were insufficient

‘measurements to form a reliable estimate of dominant wave

direction. The hurricane centre is shown by the open circle

at co-ordinates 0,0. The system is shown for the Northemn
(i.e. anti-clockwise

Holthuijsen 2012, fig .4
Bonnie o° 20" [orimary (1" ) wave field |

. AN

G

150°

Model is consistent with
observations

®



Wave Angular distribution. Comparison with Buoy Data
(Young, 2006)
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Fitting of Wave Parameters

Fitting example at radius R=1.5Rm

Wave energy, wavelength and wave direction at

g Um=7Omis, Rm=50km, RRm=15 (Hs0=13.8m)  V.ms different distances from TC center are fitted
i 10 with cosine functions for all considered cases
8 (different TC radii, Umax and translation speed)
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Parameterization of Fitting Functions

. Magnitude (A) and location (P) of fitting
'3 function’s maxima vs dimensionless

4 E/EO
LILO parameter:

g o
© (0-0,)/180

Large Vt €<—— Small Vt

Xd =R/ Lcr
Ler =—qc, (U /g)(U /2V,)" I(1+q)

2.5

Amplitude

Two regimes:
11.5
- 1.Slow TC (Xd>1):

AE1=1+2.3*Xd.N(-0.46)
AL1=1+1.4*Xd.~(-0.62)
PE1=8.5*l0g(Xd)+293
PL1=19%l0g(Xd)+340

2. Fast TC (Xd<1),
/ Vi>>Cp, waves are not trapped:

AE2=0.26*l0g(Xd)+1.03
ok |15 AL2=0.093*l0g(Xd)+0.815
o A PE2=12%10g(Xd)+229

- 0 =i

—. 4, PL2=8.7*l0g(Xd)+205
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TC Reconstruction from Analytical Functions

Parameters of stationary cyclone (Rm=50 km, Um=50 m/s)

Wind: Holland, 1980

Stationary cyclone: Hs and
wavelength from 1D fit

R/Rm
- S N L -
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Moving TC: angular
distributions from
parameterized cosine

functions (depend on Rm, 5 s (m), Vt=3 mis 5 s (m), Vt=8 mis
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Example of TC reconstruction for Vtrans=3, 8, 12 m/s
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A model for waves development and propagation under spatially and time varying
winds, is suggested.

The model is based on energy and momentum conservation laws. Wind energy input
and wave breaking dissipation are the main sources to govern the wave energy
conservation equation, while non-linear interactions are essential to control the peak
frequency downshift of the energy-containing part of the spectrum.

1D self-similar fetch-laws are used to derive fully consistent parametric solutions for 2D
surface wave development.

Calculations were carried out for the case of the uniform wind field and for an
inhomogeneous cyclonic wind field with different hurricane translation velocities.

The calculations reproduce the anisotropy of the energy distribution inside the
hurricane and the effect of wave trapping by a moving cyclone.

As shown, varying winds can lead to the divergence of group velocities
(focusing/defocusing wave groups), to significantly affect the energy balance.

The results are in line with field measurements and existing knowledge about TC
dynamics

The model can provide practical means to rapidly map and assess the energy,
frequency and peak wave direction distributions. Applications can serve to provide
prior-information to analyze high-resolution satellite measurements and to improve
remote sensing algorithm developments.

The core support for this work was provided by the Russian
Science Foundation through the Project No17-77-30019
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