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 Observation (satellites, buoy, aircraft) and modeling (e.g.
WAWEWATCH III) of waves in TC is critical for forecasting and
fundamental study

 Classical self-similar theory of wave development (Kitaigorodskii,
1962) demonstrated practical capabilities to reproduce surface wave
characteristics, even under extreme wind conditions (e.g. Young,
1988, Young, 2013, Kudryavtsev et al., 2015).

 However, fields of surface waves under these extremes can rapidly
become complex and characterized by multiple wave systems,
limiting the direct use of the 1D self-similar fetch-laws (e.g. Hwang et
al., 2017, Hwang and Walsh, 2018).

 In moving TC surface waves in the right sector obtain “unlimited”
fetch (group velocity resonance) and can be “trapped” by TC

 It leads to typical asymmetry - appearance of waves, much larger than
ones predicted by a “standard” fetch-law estimates using TC wind
speed and its radius as a fetch

 Angular wave distributions in different TC parts are complicated :
multimodal wave systems, some waves are moving windward



The aim of this work is to develop a 2D parametric model for wave
evolution in non-uniform wind field, based on

1) energy and momentum conservation laws (Hasselmann et al., 1976)
and

2) self-similarity concept relating non-dimensional wave frequency,
wave energy and fetch (Kitaigorodskii, 1962)

and to apply this model to TC conditions



 Wind input:
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- energy spectral density

- momentum spectral density

- energy source

- momentum source

- group velocity

 Dissipation:  Non-linear interactions:

(Miles, 1957)

(Plant, 1982; Meirlink et al. 2003) 
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and some algebra…

- energy growth rate (wind+dissipation)

- peak frequency (non-linear interactions)

- peak direction (wind)

Parameters in the right-hand side are derived using 
1D equations (uniform wind:                            ),

together with fetch-limited laws (Kitaigorodskii , 1962)
and then generalized to 2D equations
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Right hand side:
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Model assumption: 
Dissipation is proportional to the wind input:

For the case of uniform wind:
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Peak frequency
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Fetch laws:

For the case of uniform wind:
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Right hand side (NL interactions):
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Zakharov, 2010)
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Restriction for fully 
developed waves:
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Dissipation and four-wave interactions 
are functions of wave spectrum, 

while wind input is also a function of 
wave direction

Integral over azimuth vanishes for SD and SN. 

Change of wave direction is caused by wind
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Spectral peak direction
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Wave breaking of dominant waves:
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- wave train position

- modified energy

- spectral peak group velocity (from eq. for frequency)

- spectral peak direction

- peak direction gradient (focusing term), n pG nϕ= ∆ ∆
(or  two eq. instead: for         and       )pϕ∆ n∆

System describes the development of
surface waves under a varying wind
field in both space and time, as well as
the evolution of swell propagation in
the absence of wind forcing



 A wind field on a uniform grid and a initial locations of wave 
trains are set

 Wave characteristics at t=0:

 Right-hand sides of every equation are calculated

 Wave train coordinates and other parameters at ti+1=ti+dt are 
obtained with the use of 4th order Runge-Kutta scheme 

 Starting dt~1s slowly increases to 30 min to reduce calculation 
time and data amount
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24
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An array of wave train coordinates, peak frequency, energy, 
direction, wave age, distance between “neighbor” characteristics 

(focusing effect) at every discrete time point

,0=∆ pϕ



Constant wind from the shore. 
Effective fetch: Ucos(a) 

Hs field

Max Hs inside areas around grid points vs
effective fetch in comparison with fetch law 
model,
(p=0.83, ce=5.88e-7, Babanin&Soloviev, 1998)
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Dimensionless energy and peak frequency vs dimensionless fetch. 
Our model (red/black), Babanin&Soloviev, 1998 (blue). 
Green line shows model evolution of energy and frequency after the 
wind suddenly drops at fetch
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Fetch laws:

1. The model provides a smooth transition from developing to fully 
developed waves.
2. Swell: a rapid decay of the wave energy (much stronger than predicted by 
Zakharov and Badulin, 2017) under the weakly turbulent theory,          )
3. Swell: a moderate downshift of the peak frequency
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4108~ ⋅=x

Wind is 
switched off

Wind is 
switched off



Hs and wavelength profiles

Caustic

Wind 
abrupt Wind 

abrupt

1. Wind (16 m/s) abruptly 
decreases to 3m/s at fetch 1000 km
2. Fully developed waves turn to 
decaying focusing swell 
3. Rays cross at fetch ~1300 km
4. In caustic point energy 
temporarily grows, than rays 
diverge with additional energy lose
5. Caustic effects are weakly/not 
manifested in wavelength



Wind is uniform in the main direction, but varying in the perpendicular direction, V<<U

410WG −=
Gradient of wind direction 

rad/m:
negative – divergence (blue), 
positive – convergence (red) 
zero – black
dashed line ---- wind abrupt (swell)

Divergence of the wind velocity forces 
the wave rays to widen – additional 
energy sink (decrease ~30%, and 
deceleration of the frequency downshift)
Swell: rapid attenuation and shorter 
peak wavelength

Wind velocity convergence forces wave 
rays to concentrate (caustic), then diverge 
and converge again under the action of 
wind gradient (recurrent process).
Swell: wave-ray thickening is 
terminated, rays diverge away from the 
last caustic zone, energy rapidly 
attenuates 

Wind 
abrupt

Wind abrupt

Caustic

Caustic

Caustic

Caustic
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Wind field with zero inflow angle Wind field with 20 deg inflow angle
(Shea and Gray, 1973)
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Wind direction gradient:
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- wave-ray focusing 
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Wave breaking 
(strong dependency on wave age)

Zero inflow angle

20 deg inflow angle

Dash lines – focusing term is off (Gn=0) 

Caustic

Caustic

20 deg inflow angleZero inflow angle

Vertical dash lines - a wave-train passes from wind force regime to swell one 



Different combinations of TC radii 
and maximum wind speeds: 
Rm=30, 50, 70 km, 
Um=30, 50, 70 m/s

For the same radius: 
the larger the wind speed, the larger 
the wavelength and Hs

For the same maximum wind speed:
the larger the radius, the larger the 
wavelength and Hs



Different combinations of TC radii 
and maximum wind speeds 
(Rm=30, 50, 70 km, 
Um=30, 50, 70 m/s)
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Profiles almost collapse, 
exhibiting self-similar shapes for 
distances smaller than 2Rm 

Inflow angle modifies Hs profiles 
(extra energy pumping due to 
cross-ray convergence)
These effects on wavelength are 
less strong

Zero inflow angle

Radial distributions are scaled:

20 deg inflow angle



In coordinate system related to TC,
wave train position: p

j j g
d x c
dt

κ= iVt−

Typical wave train parameters for different hurricane 
translation velocities, Vt
(TC is moving upwards)





Waves from up-right sector (red, blue) are “trapped” 
by TC central part and shifted to the left (high energy). 
Extra energy pumping is due to ray focusing effect.
After caustic             stronger dissipation.

Dash line: Gn=0 (no focusing effects)

In very fast hurricanes most waves pass downwards.
Energy intensification is  in down-right TC sector.



Vtrans = 0 m/s

Vtrans = 3 m/s
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Vtrans = 5 m/s

Vtrans = 8 m/s
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Vtrans=8m/s
Square areas with ~30 deg 
angular size are taken at 
distances Rm, 2Rm, 4Rm 

from TC center.

Ray trajectories inside one of 
the areas (red one). 

High point concentration 
corresponds to starting stage of 
wave development (dt is small).   

Color is Hs.

Hs “spectrum”.
Every point is mean Hs along 
trajectory part inside square 

area, in mean wave direction.
NB In moving coordinate 

system, wave peak direction 
does not coincide with 
tangent to trajectory!

Swell

Wind waves



R=Rm R=2Rm

R=4Rm R=7Rm

Distributions are 
“tracing” wave 

evolution



Young, 2006

Wave direction in TC from field measurements

Model is consistent with 
observations

R=Rm

R=2Rm

R=4Rm





Wave energy, wavelength and wave direction at
different distances from TC center are fitted
with cosine functions for all considered cases
(different TC radii, Umax and translation speed)

Fitting example at radius R=1.5Rm



AE1=1+2.3*Xd.^(-0.46)
AL1=1+1.4*Xd.^(-0.62)
PE1=8.5*log(Xd)+293
PL1=19*log(Xd)+340

Small VtLarge Vt

Small VtLarge Vt

Magnitude (A) and location (P) of fitting 
function’s maxima vs dimensionless 
parameter:

Two regimes: 

)1/()2/)(/(
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a +−=
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1. Slow TC (Xd>1):

2. Fast TC (Xd<1),
Vt>>Cp, waves are not trapped:

AE2=0.26*log(Xd)+1.03
AL2=0.093*log(Xd)+0.815
PE2=12*log(Xd)+229
PL2=8.7*log(Xd)+205



Parameters of stationary cyclone (Rm=50 km, Um=50 m/s)

Example of TC reconstruction for Vtrans=3, 8, 12 m/s

Wind: Holland, 1980

Stationary cyclone: Hs and 
wavelength from 1D fit

Moving TC: angular 
distributions from 
parameterized cosine 
functions (depend on Rm, 
Um, Vt and distance from 
TC center)

Vtrans



 A model for waves development and propagation under spatially and time varying 
winds, is suggested. 

 The model is based on energy and momentum conservation laws. Wind energy input 
and wave breaking dissipation are the main sources to govern the wave energy 
conservation equation, while non-linear interactions are essential to control the peak 
frequency downshift of the energy-containing part of the spectrum. 

 1D self-similar fetch-laws are used to derive fully consistent parametric solutions for 2D 
surface wave development.

 Calculations were carried out for the case of the uniform wind field and for an 
inhomogeneous cyclonic wind field with different hurricane translation velocities.

 The calculations reproduce the anisotropy of the energy distribution inside the 
hurricane and the effect of wave trapping by a moving cyclone.

 As shown, varying winds can lead to the divergence of group velocities 
(focusing/defocusing wave groups), to significantly affect the energy balance.

 The results are in line with field measurements and existing knowledge about TC 
dynamics

 The model can provide practical means to rapidly map and assess the energy, 
frequency and peak wave direction distributions. Applications can serve to provide 
prior-information to analyze high-resolution satellite measurements and to improve 
remote sensing algorithm developments.

The core support for this work was provided by the Russian 
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