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1. Introduction
With the advancement of on-site observation instruments, the mode-2 ISWs developed in the ocean have been gradually observed over the past 20 years.

The sea water along the Pacific coast of Central America (Western Nicaragua) has the seafloor depths between 100 m and 2000 m. Previous scholars have
done little research on the internal waves in this area, focusing more on the effects of the winter Tehuantepec monsoon, Papagayo monsoon and Panama
monsoon on the sea surface temperature distribution and circulation. In the past, most of the internal solitary waves discovered by seismic oceanography
method were the mode-1 ISWs. Recently, seismic oceanography method has been used to reprocess the existing seismic data of the Pacific coast of Central
America, and we find the mode-2 ISWs group on the survey line. This ISW group is a relatively complete mode-2 ISWs group discovered by seismic
oceanography method for the first time. Based on the current results and previous work, we will mainly study the mode-2 ISWs in the Pacific coast of Central
America about the vertical structure characteristics, and the internal solitary wave propagation characteristics.

The horizon velocity of the ISWs trough or
peak (v) can be expressed as:
v=(cmpZ-cmpl)] T=(cmp2-cmp])][(s2-
s)*dt. where cmpl and cmp?2 are the
ISWs trough or peak positions at different
time, s/ and sZ are the shot numbers
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Figure 5. The amplitude of the six mode-2 internal
solitary waves selected in survey line 88 varies with
the water depth.

Table 2. Apparent phase velocities of the six mode-2 internal
solitary waves in survey line 88. The apparent phase

. l" 501 LR A & v : 5
/ : 1 (Y - )
e NV S AF ORI MR B T
S NAAT W "hln' WAL a | T e, Oy AR Y W s M T R e i) .__'_ i
soo W R S L g 100 SRILT TR m RN L0 T T ) roof My MYy () >
BT FI‘PF .'~ R II”' '-:'.r iy, " vl Ly M LA '.r i
. kg W el ey L.?a'a_hL‘lw \ g ﬂ-.':,;:i'_‘h, 0
[he amp“tUdes of the Al |ofiset=301.65m !
wl9) Lh) A1) ISW# H (m) Am

5 15 150 (m) Vseis (m/S) VKdV (m/S) . .
mode-2 ISWs generally Figure 6. Pre-stack migration observes the changes generally InNCreases with
- In the fine structure of the mode-2 ISWs ISW4 in the 106.95 .79  0.48+0.08  44°N 0.41 the increasina depth of
_decrease first, _then survey lin 88, g dep |
increase, and finally As to the ISW4, during the acquisition of about 2 Shen ] b e 0.44 water ( comparing ISWT,
. L o = decrease with the increase 50 seconds, the bifurcation and merger of the 3 107.93 1014 057+013  44°N B ISW3 and ISW5). In
Figure 4. Mode-2 internal solitary wave in seismic £ : flecti t (Fi 6) - - 9 (=L - addition. the apparent
stacked section for survey line 88. Line acquisiton O depths (Figure 5). retlection event appear (Figure 6). 0 , the app
time is 00:36:20 - 06:22:41, December 17th, 2004. The dimensionless amplitudes of ISWT, ISW3- 4 132.83 St |DEEENAL ] AT et phase velocity of the
ISW6 correspond to the case of 2a/h,<2, which . N P 04 mode-2 ISWs with a larger
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Conclusions
v'As to the mode-2 ISWs ISW4 located on the land slope, during

the acquisition of about 50 seconds, the bifurcation and merger
of the reflection event appear.

H, seafloor depths; Am, maximum amplitudes; h,, equivalent pycnocline thicknesses; asymmetrical. The high frequency internal

a, equivalent ISWs amplitudes; hc, the mid-depths of the pycnocline; Op, the degree \y3ves are more developed at their tail side.
to which the mid-depth of the pycnocline deviates from 1/2 seafloor depth.

5. Discussion
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The red curves in Figure 9 are the vertical amplitude distributions of the mode-2 ISWs calculated by
the KdV equation. The depths of the maximum vertical mode values are basically the same as the
depths of the ISWs maximum amplitudes, and the observed variation trends of the ISWs amplitudes
are also close to the theory. It can be seen that the survey line 76 is affected by the anticyclone edge
(Figure 10). Anticyclone will increase the depth of the thermocline in the surrounding sea water, while
the deepening of the thermocline (pycnocline) is conducive to the generation of the mode-2 ISWs.
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