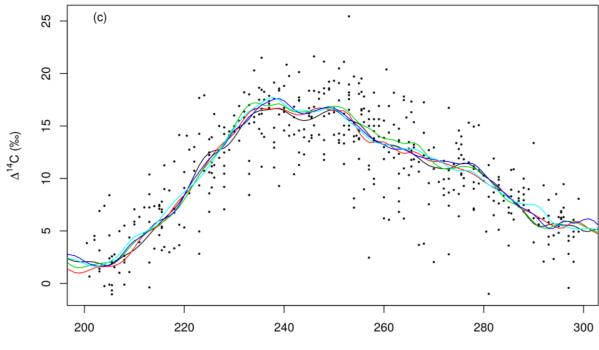
Statistical approaches and tools for IntCal20

<u>Christopher Bronk Ramsey</u>, Tim Heaton, Maarten Blaauw, Paul Blackwell, Paula Reimer, Ron Reimer, and Marian Scott

> LEVERHULME TRUST _____

Some key challenges

- High frequency solar Miyake-type events
- Records with uncertainty in calendar age
- Floating tree-ring sequences (eg late glacial)
- Reservoir and dead-carbon effects

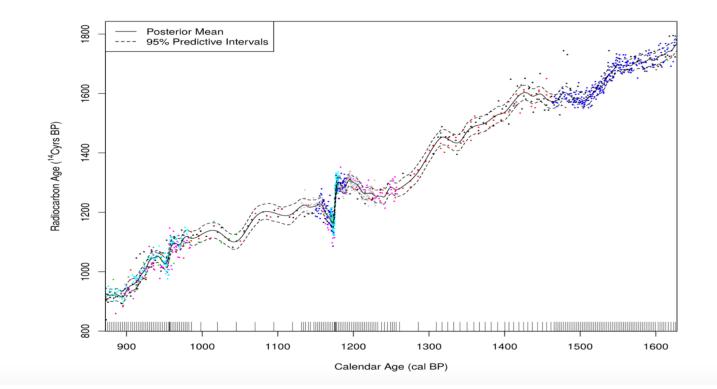

New approach

- Bayesian splines
- Ability to deal with Geophysical constraints
- Posterior information generated
- More rapid code to run

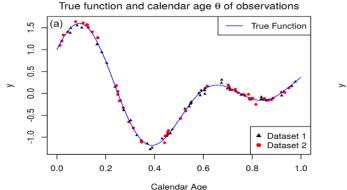
Updated tools

- Calib
- OxCal
- Bacon
- IntChron (INTIMATE)

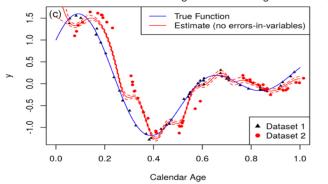
Generates multiple curve realisations

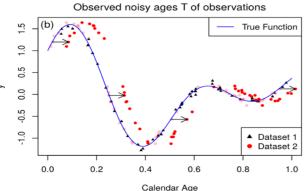


 Δ^{14} C Space Posterior

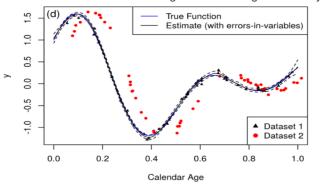

Calendar Age (cal BP)

Miyake events


Can choose more knots where need more detail e.g. Miyake events



Merging of timescales



Estimated function if do not recognise calendar age uncertainty

Estimated function if do recognise calendar age uncertainty

Marine and speleothem data

- Marine and speleothem determinations do not directly measure atmospheric ¹⁴C
- Reservoir ages and DCF:

$$X_i = \mu(\theta_i) + R_j(\theta_i) + \epsilon_i$$

where $R(\theta)$ is term specific to set *j*.

- Marine Reservoir Ages estimated via a OGCM with coastal shift
- Dead carbon fractions varying around an unknown mean
- Incorporated similarly to errors-in-variables (but Up-Down ¹⁴C shift as opposed to L-R θ shift)

Additional information

Statistical approaches and tools for IntCal20

Christopher Bronk Ramsey, Tim Heaton, Maarten Blaauw, Paul Blackwell, Paula Reimer, Ron Reimer and Marian Scott

IntCal Statistics Group

christopher.ramsey@arch.ox.ac.uk

LEVERHULME TRUST

C Bronk Ramsey (IntCal Statistics Group)

EGU 2020

- Summary of IntCal20: Aims, Data and Challenges;
- New statistical method of Bayesian spline regression;
- Incorporating unique features in the data:
 - Tree rings (ca. 0 14000 cal BP) blocking, keeping detail, Miyake events;
 - Further back in time (ca. 14000 55000 cal BP) uncertain calendar ages; reservoir/dcf effect; heavy tails.
- Updates to Bacon, Calib and OxCal.

< ロ > < 同 > < 三 >

Idea of radiocarbon calibration: IntCal

- Proportion of atmospheric ¹⁴*C* fluctuated significantly over time
- Need to adjust "radiocarbon dates" via calibration curve
- IntCal20 curve provides historic estimate of ¹⁴C from 0 – 55,000 cal BP
- Find all calendar ages θ consistent with observed radiocarbon age X

This is an inverse problem so Bayesian statistics is natural

 $\pi(\theta|X) \propto f(X|\theta)\pi(\theta)$

where $f(X|\theta)$ is *likelihood* of observing ¹⁴*C* determination *X* if it came from calendar year θ , given by the calibration curve.

IntCal20 Component Datasets

IntCal20 based on > 12,900 ¹⁴*C* determinations where calendar age θ is known (either exactly or estimated). Data split into two categories: Back to 14,190 cal BP:

• Dendrochronologically dated trees - many annual measurements

Further back (up to 55,000 cal BP):

- Speleothems e.g. Hulu Cave (Cheng et al., 2018)
- Corals e.g. Barbados, Tahiti (Bard et al., 1990)
- Macrofossils e.g. Lake Suigetsu (Bronk Ramsey et al., 2012)
- Forams e.g. Cariaco Basin (Hughen et al., 2004)
- Floating ¹⁴C tree-ring sequences Bølling-Allerød (Adolphi et al., 2017) and SH kauri (Turney et al., 2010)

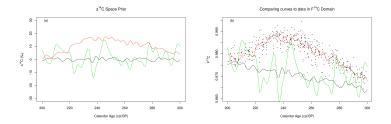
Need to combine all these datasets together

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

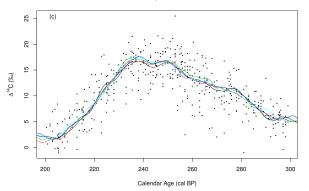
- Tree-rings a mix of annual and multi-year ¹⁴C measurements
- Variable data density and sharp Miyake-type events
- Uncertainty on calendar ages of some ¹⁴C determinations
- Floating tree-ring sequences (with relative but no absolute calendar ages)
- Indirect measurements of atmospheric ¹⁴C speleothems and marine samples
- Potential over-dispersion in observed ¹⁴C samples (additional sources of variation)

We'll discuss those in red.

IntCal20 uses new methodology:


- Quicker to update curves (permit more investigation);
- Still rigorous, captures uniqueness of the data;
- Ideally Bayesian (consistent with calibration).

We selected:

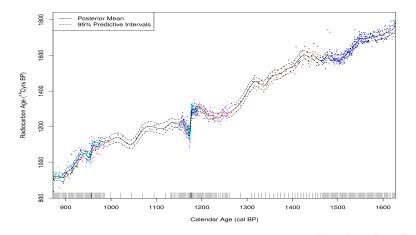

- Bayesian splines;
- Flexible to incorporate unique features of the data;
- Provides posterior information of independent interest.

Bayesian Methods:

- Prior attempts to capture beliefs, penalizes roughness in $\Delta^{14}C$
- Observed data provides a likelihood to combine with prior based on closeness to ¹⁴C samples
- Combine into posterior updated beliefs in light of observed data

Use MCMC — outputs lots of plausible curves we summarise

∆14C Space Posterior


5900

Unique aspects of IntCal data

-

Challenges: Variable Data Density and Miyake-type events

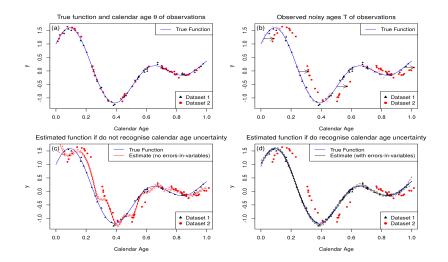
Can choose more knots where need more detail e.g. Miyake events

C Bronk Ramsey (IntCal Statistics Group)

Errors-in-variables

- Not all calendar ages of older determinations are known exactly e.g. varve counting, wiggle-matching, palaeoclimate tie-pointing, floating tree-ring sequences;
- We only observe (X_i, T_i), where T_i noisy observations of true calendar age θ_i:

$$\begin{aligned} X_i &= \mu(\theta_i) + \epsilon_i \quad \text{can't just be simplified to} \quad X_i &= \mu(\theta_i) + \epsilon_i \\ T_i &= \theta_i + \eta_i \quad T_i &= \theta_i \end{aligned}$$


• Some timescales need registering/merging;

Hope that:

- If multiple records show same features then keep;
- Features seen only in one record are likely noise so smoothed.

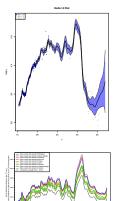
< D > < P > < P >

Challenges: Merging timescales II

C Bronk Ramsey (IntCal Statistics Group)

<ロト < 回 > < 回 > < 回 > < 回</p>

- Marine and speleothem determinations do not directly measure atmospheric ¹⁴C
- Reservoir ages and DCF:

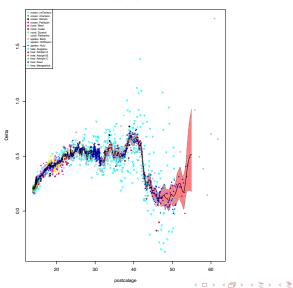

$$X_i = \mu(\theta_i) + R_j(\theta_i) + \epsilon_i$$

where $R(\theta)$ is term specific to set *j*.

- Marine Reservoir Ages estimated via a OGCM with coastal shift
- Dead carbon fractions varying around an unknown mean
- Incorporated similarly to errors-in-variables (but Up-Down ¹⁴C shift as opposed to L-R θ shift)

- Create preliminary ¹⁴C curve based upon Hulu-cave only
- Use as input to 3D LSG OGCM (Butzin et al., 2020)
- Provide first-order approximation to MRAs for each dataset
- Apply constant coastal shifts and add variation to make consistent with overlap with atmospheric trees

Cariaco is a unique case dealt with differently

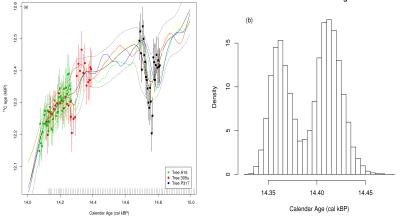


Outputs and Implications

< < >> < <</>

-

IntCal20: Estimated $\Delta^{14}C$



Delta 14 Plot

C Bronk Ramsey (IntCal Statistics Group)

EGU 2020

IntCal20: Realisations and Internal Calibration

Posterior location of oldest ring for tree P305u

< < >> < <</>

- (E)

< B

- Higher annual detail will increase multimodality in calibrated age estimates
- Potential use of realisations to include more information on curve currently lost in summarisation
- See our other talk

- IntCal20 has new methodology based on Bayesian splines;
- Runs much more quickly;
- More flexible and can investigate modelling choices;
- Provides output of potential further interest.