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The Milky Way is nothing else  

but a mass of innumerable stars planted 

together in clusters. 

Galileo Galilei 



Abstract 

Population growth, economic development and risk-

blind urbanization often increase exposure to risk, 

including that due to floods. While rural flooding may 

affect much larger areas of land, urban floods are 

more challenging to manage, since the higher 

population and asset density in the urban 

environment increase the environmental and social 

impacts of floods and make the potential flood 

damages more costly.  

 

Therefore, the need for integrated flood insurance 

policy and products on extended parts of the world is 

pronounced in order to reduce the financial 

consequences of extreme flood events, which 

endanger in many cases the environmental, social 

and economic stability.  

 

As the assessment of the so-called collective risk is a 

typical issue faced in insurance and reinsurance 

practices, in this study we investigate the stochastic 

dynamics of daily stream flow series with particular 

interest to the existence of clustering mechanisms in 

floods, which is known to increase the potential risk. 

  

We analyze collective risk on the US-CAMELS dataset, 

treating the stream flow exceedances over given 

thresholds as proxies for insurance claim amounts 

(Serinaldi and Kilsby, 2016).  

 

Moreover, we develop modelling and simulation 

approaches of extreme flows as a step towards the 

deeper understanding of the relationship between 

the stochastic patterns of flood occurrence and 

proxies of insurance claims, paving the way for a 

more efficient use of the available stream flow 

records. 
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The consequences of flood events impact on both 

individuals and communities, endangering in many cases 

the social and economic stability.  

 

The severity of these consequences varies greatly 

depending on location, extent of flooding, vulnerability 

and the value of the affected natural and constructed 

environments. 

 

Besides public and individual measures, insurance is an 

important factor in reducing the financial risk for 

individuals, enterprises, and even whole societies where 

extreme flood events are concerned in order to protect the 

insured from excessive losses that substantially threaten 

their living or business conditions (Kron, 2005). 

Our research focuses on  

River Flooding 

 
River flooding can be caused by rainfall, or 

snowmelt. This type of flood occurs when the 

river is unable to carry the flow of water, 

resulting in escape of water from the normal 

perimeter and submergence of surrounding 

low-lying land. 

About Flood  

Insurance  



Insurance companies should consider 

clustering mechanisms in their practices to 

avoid underestimation of the exceedance 

probability of collective risk. 

(Goulianou et. al, EGU 2019) 



We used and processed the US-CAMELS dataset 

(Newman et al., 2014), which comprises 671 daily 

stream flow time series across the major basins and 

hydrological units in USA.  

 

From this dataset, 360 stream flow time series with the 

maximum temporal overlap (namely, 35 years from 

1980 to 2014) and less than 10% of missing values were 

selected. 

Dataset 

Our Aim 

 
As this dataset spans a very wide range of 

hydrometeorological processes and 

conditions across USA, our aim is to develop 

modelling simulations in order to evaluate the 

existent clustering mechanisms of extremes 

and the impact of Hurst-Kolmogorov 

dynamics on the time series. 



Peak Over  

Threshold Method 
in insurance 

Peak Over Threshold method (POT) has become 

one of the most preferable extreme value 

approaches in insurance.  

 

The threshold should be chosen such that all 

losses above the threshold could be considered as 

extreme losses, in the sense of the underlying 

extreme value analysis.  

 

To characterize the dynamics of extreme stream 

flow values, we selected four different percentage 

thresholds (90%, 95%, 98%, and 99%). 

Threshold selection 
 

The dominant trend in insurance practices is 

to select high percentage thresholds (99% or 

greater) in order to analyze exclusively high-

impact extreme flood events, which are mainly 

responsible for the large amounts of 

compensations that companies will have to 

pay to their clients.  

 

Although this is a desirable option, it is not 

always a possible one. The main reason is 

that, in many cases, the length of the available 

observed time series is quite short.  

 

As a result, in such cases, selecting a high 

percentage threshold leads to inaccurate 

conclusions regarding the statistical 

behavior of the mentioned time series. 



Methodology 

Collective Risk 
 

Collective Risk 𝑆 is the total claim amount 

regarding a portfolio of (re)insured properties 

that produces a random number 𝑁 of claims 

in a certain time period. Following Serinaldi 

and Kilsby (2016), we use POT flows as a proxy 

for collective risk estimation, defined as: 

 

 

 

 
 

where 𝑌𝑗 is the jth claim proxy (over-threshold 

flow fluctuation severity), 𝑁 is the number of 

exceedances, and the total claims 𝑆=0 if 𝑁=0. 

 

Assessing the collective risk 𝑆 is a typical 

problem faced in insurance sector. 

SMA Method - GHK Model 

 
The generalized-HK (GHK) process is a process exhibiting an 

HK behavior. It is a method that can preserve explicitly (i.e. 

fully analytical calculations) four marginal moments of a 

process for any type of dependence structure (Dimitriadis 

and Koutsoyiannis, 2018). 

𝑺 = 𝒀𝒋

𝑵

𝒋=𝟏

 



Evaluating  

persistence 

Based on the mean climacogram 

(Dimitriadis and Koutsoyiannis, 2015) of the 

360 empirical stream flow time series of our 

dataset, the Hurst parameter is estimated 

as 0.63 indicating a persistent behavior 

(dependence).  

 

We track the effect of this dependence 

structure on the behaviors of POT flows in 

the annual scale and the estimation of the 

collective risk proxy. 



SMA Method  

- GHK Model 

GHK Model 
 

For the stochastic simulation of a series with 

generalized long-range dependence (GHK model) by 

preserving explicitly, we calculate the first four 

central moments of the sample series. 

 

In order to produce the synthetic time series from 

the data of the observed (empirical) one, the model 

requires as input the following:  

mean (Sm), variance (Sv), skewness and kurtosis 

coefficients (Ss and Sk), Hurst parameter of the GHK 

model (𝐻), scale parameter (𝑞), length of synthetic 

series (𝑁).  

 

SMA Method 
 

In this case, we use the symmetric moving average 

(SMA) method (Koutsoyiannis 2000; 2016), a scheme 

for approximating the marginal probability function 

of a process by exactly preserving its first four 

central moments which is found to be adequate for 

various distributions commonly applied in 

geophysical processes (Dimitriadis and 

Koutsoyiannis, 2018). The SMA method is described 

by the following equation: 

 

 

 

 

where 𝑥𝑖 is any process with any type of 

dependence, 𝑎𝑙 are coefficients calculated from the 

autocovariance function and 𝑣𝑖 is white noise 

averaged in discrete-time. 

𝒙𝒊 =  𝒂 𝒍 𝒗𝒊+𝒍

∞

𝒍=−∞

 



Phase 2 
 

In addition to our modelling simulation, 

studies that evaluate the clustering 

mechanisms of extremes on this dataset, 

based on the observed and shuffled time 

series in terms of annual collective risk 

(Papoulakos et al., 2020) are applied. 

 

The diagrams of the empirical cumulative 

distribution function (ECDF) of collective risk 

for the four thresholds are extracted, 

illustrating the following curves: synthetic, 

mean synthetic, mean shuffled, upper and 

lower limits of shuffled and the observed. 

Exploratory 

Analysis 

Phase 1 
 

We choose to develop SMA-GHK modelling 

simulations of the following stations: 

 

 The USGS 07067000 (Current River) at Van 

Buren, State of Missouri, USA. 

𝐻 = 0.72 and 𝑞 = 2.71 days 

 The USGS 07071500 (Eleven Point River) 

at Van Buren, State of Missouri, USA. 

𝐻 = 0.77 and 𝑞 = 1.96 days 

 

We developed 1000 synthetic time series for 

each station. 
 

 



Results ID 07067000 (Current River) - H: 0.72, q: 2.71 days 



Results ID 07071500 (Eleven Point River) - H: 0.77, q: 1.96 days 



 

HK dynamics 
 

The behavior of daily 

stream flow is found to be 

consistent with HK 

dynamics characterized by 

moderate 𝐻 parameters (in 

the range 0.6-0.7), through 

Monte Carlo simulations. 

 

GHK Model 
 

The ECDF curve of the 

observed collective risk 

proxy is contained in the 

Monte Carlo prediction 

limits by the GHK model, 

preserving the HK 

dynamics and the 4 four 

moments. In contrary, 

shuffled (randomized) 

curves have a different 

behavior, especially in the 

tails of the distribution.  

 

POT Method  
 

Results encourage the use 

of the POT method for 

sampling of extremes.  

 

Threshold Impact 
 

As the threshold increases, 

the deviation between the 

observed and the synthetic 

series increases, too. 

Conclusions 



Additional material will be available 

at EGU2020.eu until 31st May 2020 

Learn More 

Further information about 

the project are obtainable at  

our research team’s site 

https://www.itia.ntua.gr/en/ 

https://www.itia.ntua.gr/en/
https://www.itia.ntua.gr/en/
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