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Weather fronts are very important for both total 
and the extreme precipitation globally

Proportion of global annual extreme precipitation 
(defined as events above the 99th percentile from 
ERA-Interim) associated with fronts identified in ERA-
Interim using method of Berry et al 2011.
Figure from Catto, J. L., and S. Pfahl (2013), J. G. R.

of front is in the midlatitudes (from 30! to 60!) with 68% of
precipitation occurring with a front. Dividing the results into
front types reveals that the total proportion of precipitation
associated with warm fronts is greater than with cold fronts,
particularly over land where the warm front frequency is
higher than the cold front frequency. Cold and warm fronts
account for almost the same amount of precipitation in the
midlatitudes, where midlatitude cyclones are the dominant
weather feature, adding to a total of 57% of midlatitude
precipitation occurring with either a warm or cold front. The
largest proportions of precipitation associated with quasi-
stationary fronts occur over land (and particularly close to
orography), where there are sharp gradients in temperature
and moisture associated with the boundary layer. The iden-
tification of the fronts on the 850 hPa level is problematic
near high orography and so these particular results should be
considered with that in mind.
[16] The proportion of precipitation associated with fronts

varies throughout the year, as can be seen in the seasonal
evolution (December–February (DJF) to September–
November (SON)) in Figure 2. The proportion of precipita-
tion associated with fronts mainly varies according to the
front frequency, which varies in latitude according to the
seasonal shifts of the midlatitude storm tracks [Chang et al.,
2002]. During the Northern Hemisphere winter season
(DJF), up to 60% of precipitation over the North American
eastern seaboard and the North Atlantic storm track occurs
with an associated cold front, and the values in the North
Pacific are over 40% (Figure 2a). These values reduce to a

minimum in June–August (JJA) of 30–36% (Figure 2c), then
increase again in SON (Figure 2d). For the warm fronts
(Figures 2e–2h), the proportion of precipitation associated
with the fronts in the Northern Hemisphere does vary over
the seasons but not to such an extent.
[17] In the Southern Hemisphere, the seasonal cycle is not

as clear as in the Northern Hemisphere. The midlatitude
storm tracks over the South Atlantic and Indian Ocean
basins maintain their strength through the year [Hoskins and

Figure 1. Colors show annual proportion of precipitation that occurs with (a) any front, (b) cold front, (c) warm front,
(d) quasi-stationary front within a 5! box. The black contours show the front frequency as a percentage time that a front
was located within each grid box. Polewards of "60! has been cut off due to problems with the convergence of the
meridians. Regions where the surface topography is higher than 1.5 km (850 hPa in a standard atmosphere) have been
blanked out, and areas where the front frequency is less than 3% have been shaded grey.

Table 1. Annual Average Values (Calculated Using 12 Years of
Data) of the Proportion of Precipitation That Has an Associated Front

Region (All Regions
Are Within 60!N to 60!S)

Average Proportion of Precipitation
Associated With Fronts (%)

All
Fronts

Cold
Fronts

Warm
Fronts

Quasi-stat
Fronts

Global 46 17 18 11
Northern Hemisphere 41 14 17 11
Southern Hemisphere 51 20 20 11
Land 46 12 17 16
Ocean 46 18 19 9
NH Land 46 13 18 15
SH Land 46 11 15 19
NH Ocean 39 14 16 9
SH Ocean 52 21 21 10
Midlatitudes (30!–60!) 68 28 29 11
Tropics (30!S–30!N) 28 8 9 11
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Proportion of global annual precipitation (from 
GPCP) associated with fronts identified in ERA-
Interim using the method of Berry et al. 2011. 
Figure from Catto, J. L., et al. (2012), GRL.
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Climate models need to represent the correct
precipitation for the correct dynamical reasons
• We wish to contribute to the efforts to evaluate state-of-the-art climate models and to develop a 

metric based on the evaluation of frontal precipitation. (See Pendergrass et al 2020 for details of 
the precipitation metrics workshop.)

• To do this we will use the framework developed in Catto et al 2015.

• Errors in total precipitation can be decomposed into 2 regimes:
• frontal and non-frontal

• Where fronts are identified using the method of Berry et al 2011.
• On 2.5degree resolution data, identify frontal points using a Thermal Front Parameter (TFP; Hewson 1998) based on 

wet bulb potential temperature at 850hPa.

Ep = Ff,mIf,m + Fnf,mInf,m − Ff,oIf,o − Fnf,oInf,o (2)

Ep = ∆FfIf,o + Ff,o∆If +∆Ff∆If +∆FnfInf,o + Fnf,o∆Inf +∆Fnf∆Inf (3)

where the subscript, f represents the frontal regime, nf represents the no-front regime,305

m represents the model and o the observations. F is the frequency of occurrence of fronts306

when there is rain and I is the intensity of precipitation associated with each regime. The307

terms ∆F and ∆I represent the difference between the model and the observations for the308

frequency and intensity respectively.309

Figure 10 shows the absolute precipitation error from each of the 6 terms in Equation 3.310

The error associated with the frequency of occurrence of each of the regimes (terms 1 and 4311

shown in Fig. 10 a, d) contribute mostly positive errors to the total, especially for the no-front312

regime. This confirms that the climate model generally rains too frequently. In the tropics,313

the largest error contributions come from the no-front regime. This is understandable as314

there are very few fronts identified in the tropics. The dry bias over the west of the Maritime315

Continent and the wet biases over the western Indian Ocean and western Pacific are mostly316

related to errors in the intensity of precipitation when there is no front present (Fig. 10e,317

f). The dry bias over the northwest of Australia has contributions from the intensity of318

precipitation when there is and is not a front present. In some parts of the midlatitude319

storm tracks the errors in the frequency of occurrence of the regimes and the intensity of320

precipitation seem to compensate each other to produce generally small total errors. This321

error decomposition again confirms the too frequent too light error in precipitation in the322

model.323

It can be concluded that the errors in rainfall associated with the no-front regime are324

the largest contributor to the total rainfall errors. This suggests that the convective rainfall325

may be an important consideration in these errors. The location of the largest errors in the326

average daily precipitation over the warm waters also implies that convection may be the327

culprit. Figure 11 shows the percentage of the average daily precipitation associated with328

fronts that comes from the large scale precipitation scheme in the model. The regions where329
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represented as:333

Ep = Pm − Po (1)

Ep = Ff,mIf,m + Fnf,mInf,m − Ff,oIf,o − Fnf,oInf,o (2)

Ep = ∆FfIf,o + Ff,o∆If +∆Ff∆If +∆FnfInf,o + Fnf,o∆Inf +∆Fnf∆Inf (3)

where the subscript, f represents the frontal regime, nf represents the no-front regime,334

m represents the model and o the observations. F is the frequency of occurrence of fronts335

when there is rain and I is the intensity of precipitation associated with each regime. The336

terms ∆F and ∆I represent the difference between the model and the observations for the337

frequency and intensity respectively.338

Figure 10 shows the absolute precipitation error from each of the 6 terms in Equation 3.339

The error associated with the frequency of occurrence of each of the regimes (terms 1 and 4340

shown in Fig. 10 a, d) contribute mostly positive errors to the total, especially for the no-front341

regime. This confirms that the climate model generally rains too frequently. In the tropics,342

the largest error contributions come from the no-front regime. This is understandable as343

there are very few fronts identified in the tropics. The dry bias over the west of the Maritime344

Continent and the wet biases over the western Indian Ocean and western Pacific are mostly345

related to errors in the intensity of precipitation when there is no front present (Fig. 10e,346

f). The dry bias over the northwest of Australia has contributions from the intensity of347

precipitation when there is and is not a front present. In some parts of the midlatitude348

storm tracks the errors in the frequency of occurrence of the regimes and the intensity of349

precipitation seem to compensate each other to produce generally small total errors. This350

error decomposition again confirms the too frequent too light error in precipitation in the351

model.352

It can be concluded that the errors in rainfall associated with the no-front regime are353

the largest contributor to the total rainfall errors. This suggests that the convective rainfall354

may be an important consideration in these errors. The location of the largest errors in the355
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detailed in previous studies3,5,43. The method identifies MSLP minima based on the criterion that a region must 
have pressure lower than the surrounding grid-cells (using a contour interval of 0.5 hPa), with the region enclosed 
by the outermost closed contour considered as being within a cyclone. Consequently, this method is based on 
closed regions of MSLP contours while noting that there is a wide range of methods, including the method used 
here, that are frequently used to examine cyclones7,51. This method can be applied similarly in different regions of 
the world, including the tropics and the extratropics. It is applied to the global atmospheric reanalysis produced 
by the European Centre for Medium-Range Weather Forecasts (ECMWF), the ERA-Interim reanalyses product39, 
throughout the 11-year period 2005–2015 with a time step of 6-hours and a grid spacing of 0.75° in both latitude 
and longitude. As some tropical cyclones are not well-resolved at the scales of current reanalyses, the cyclone data 
are supplemented by the addition of global tropical cyclone data from the International Best Track Archive for 
Climate Stewardship (IBTrACS, v03r0944).

Fronts are identified here with an automated method42 using a thermal front parameter40,41, TFP, based on the 
850 hPa wet bulb potential temperature, θw, as shown in equation 1. The method firstly selects regions where TFP 
is less than a threshold value (− 5 ×  10−11 K m−2), then secondly examines these regions for locations where the 
gradient of TFP is zero which are joined numerically into contiguous fronts, such that the front data include both 
cold and warm fronts. The method is applied here at all longitudes globally and from 70°N to 70°S in latitude, 
similar to previous applications of this method5,34,42. It is applied here to ERA-Interim reanalysis39, using the same 
gridded region and time period as used for the cyclone data. It is noted that there are a number of ways to identify 
fronts, each with their advantages and disadvantages55, with the thermal approach selected for use here due to 
its ability to identify both cold and warm fronts, given that both of these types of fronts can be associated with 
extreme weather events5,38.
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Thunderstorms are identified here based on lightning data obtained from a global network of ground-based 
sensors (the World Wide Lightning Location Network: WWLLN45,46). The lightning data are gridded on the 
same grid as used for the cyclone and front data (i.e., 6-hourly time steps and 0.75° grid spacing), noting that 
the WWLLN observations are available at finer spatial and temporal resolutions than are the focus of this study. 
Grid-cells containing thunderstorms are identified here based on two or more lightning strokes observed within 
the 0.75° ×  0.75° region and 6-hour period represented by a particular grid-cell and time step, so as to provide 
an indication of a deep convective storm at a location within that region and time period. The lightning data are 
available for complete years from 2005 onwards, defining the start of the time period considered here.

Extreme weather events. Extreme values of precipitation and wind speed for a given grid-cell are consid-
ered here as being greater than the 99th percentile (calculated individually for each grid point location based on 
the entire period 2005–2015), noting that extremes can be defined at a number of different scales including more 
frequent events (e.g., based on the 90th percentile33) or less frequent events (e.g., multi-year return periods32) than 
those considered here. Given the 6-hourly time steps and the 11-year period of available data, the use of the 99th 
percentile to examine extreme events results in about 160 events at each grid-cell location, whereas the choice of 
a higher threshold value such as the 99.9th percentile would result in too few events to produce robust findings.

Precipitation and wind speeds are obtained from ERA-Interim reanalysis39 using the same spatial and tempo-
ral grid as used for the front, cyclone and thunderstorm data (i.e., 6-hourly time steps and 0.75° grid spacing in 
both latitude and longitude). Although purely observational datasets are available they can be relatively limited 
in spatial extent, particularly in the case of wind data, such as for coverage in ocean regions and high latitudes 
in general. A benefit of using reanalyses for broad-scale systematic investigations is that they can provide global 
coverage based on regular spatial and temporal grids, noting that although some fine-scale aspects may not be 
well-represented in some cases (such as the magnitude of localised extremes associated with small-scale convec-
tive or microphysical processes) the method applied here only considers whether or not an extreme weather event 
occurs (i.e., avoids uncertainties associated with quantifying the degree of severity of an extreme event). Here we 
use the 6-hour forecast values of total precipitation and with wind speeds based on the parameterised wind gust at 
a height of 10 m, similar to previous studies3,5,8,34,36,37 that have examined percentile-based extreme weather events 
using ERA-Interim reanalysis39.

Combining the cyclone, front and thunderstorm data. Phenomena such as cyclones, fronts and thun-
derstorms can influence weather conditions in their surrounding regions (e.g., as shown in Supplementary Fig. 1). 
Consequently, a ±3 grid-cell range of influence is applied to the raw data of these phenomena for use throughout 
this study (i.e., ± 2.25° in both latitude and longitude, broadly similar to previous studies2,5,34), including for use 
in defining the different types of storm combinations considered in this study. The resultant occurrence data for 
the three phenomena are presented in Supplementary Fig. 2, as well as how often extreme weather events occur 
at the same location as these phenomena, showing similar features to previous studies2,3,5,23,34,46 noting some var-
iation in methods and time periods between studies. The seven different types of storm combinations considered 
here are based on the different combinations of the cyclone, front and thunderstorm occurrence data at a given 
grid-cell and time step: Cyclone Only (CO), Front Only (FO), Thunderstorm Only (TO), Cyclone and Front (CF), 
Cyclone and Thunderstorm (CT), Front and Thunderstorm (FT) and Cyclone, Front and Thunderstorm (CFT). 
The area-proportional Euler diagrams in Fig. 1 provide general schematic representations of the storm combina-
tions based on combining the cyclone, front and thunderstorm occurrence data.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL066015
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010GL046451
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1017/S1350482798000553


From Catto et al 2015

Error decomposition 
term 1:  Contribution 
to total precipitation 
bias from errors in 
frontal precipitation 
frequency. Large 
positive values.

Error decomposition 
term 2:  Contribution 
to total precipitation 
bias from errors in 
frontal precipitation 
intensity. Large 
negative values.

Demonstration from CMIP5: 
Representation of winter frontal rainfall

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL066015


Demonstration from CMIP5: 
Compensating errors

Average values of the 
decomposition terms for the 
NH DJF and SH JJA.

All the models have large 
positive contributions to the 
precipitation error from the 
errors in frontal precipitation 
frequency, and 
compensating negative 
contributions from the 
errors in frontal precipitation 
intensity.
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Demonstration from CMIP5:
Frontal amplification factor The frontal amplification factor is 

the ratio of the mean frontal 
precipitation intensity to the 
mean precipitation intensity.
This has been calculated for all 
precipitation above 1mm and all 
precipitation above 20mm 
(shown here for the SH JJA). For 
low intensity precipitation, 
models overestimate the 
amplification associated with 
fronts.

At very high intensities, the 
models better capture the 
amplification from fronts.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GL066015


Considering observational uncertainty 
• Initial work to investigate the range of frontal precipitation characteristics in different 

observational or reanalysis datasets. Fronts have been identified from ERA5 data.

• Using data from the FROGS dataset. Figures show the average intensity of precipitation when a 
front is present. Highest intensity seen in GPCP and CMORPH and lower in ERA5.

GPCP ERA5

CMORPH PERSIANN

[mm]

https://www.earth-syst-sci-data.net/11/1017/2019/


Conclusions and Future Work

• We have a framework within which to evaluate the CMIP6 models 
that has been demonstrated for the CMIP5 data in Catto et al 2015.
• It will be important to consider a range of observations in the 

evaluation to capture the uncertainty with differing dataset.
• Next steps will be to apply the methodology to DECK simulations from 

CMIP6 for which the 6-hourly pressure level data are available along 
with daily precipitation.
• Produce metrics based on the decomposition of precipitation errors 

into frontal and non-frontal precipitation.
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