New approaches to radiocarbon calibration arising from statistical developments in IntCal20

Christopher Bronk Ramsey, Tim Heaton, Maarten Blaauw, Paul Blackwell, Paula Reimer, Ron Reimer, and Marian Scott
Two issues to be addressed

• Non-normal errors
 - For most calendar ages, curve posterior is approx. normal
 - Summarisation by normal is ok
 - But sometimes it isn’t e.g. ca. 14.75 cal kBP
 - Summarisation by normal not ideal

• Covariance...
Plausible curves
The solution

• Rather than using a curve with an uncertainty
• Use the multiple curve realisations for the IntCal curve directly
• Run models (such as wiggle matches or age-depth models) while sampling from these possible curves.

• Already working in special R-Code for tree-ring sequences
• Being implemented in OxCal...
Additional notes
New approaches to radiocarbon calibration arising from statistical developments in IntCal20

Christopher Bronk Ramsey, Tim Heaton, Maarten Blaauw, Paul Blackwell, Paula Reimer, Ron Reimer and Marian Scott

IntCal Statistics Group

christopher.ramsey@arch.ox.ac.uk
Talk Overview

- IntCal20: Pointwise Summaries and Realisations;
- Using realisations in calibration;
- Effect where calibration curve non-normal;
- Effect on joint calibration e.g. length of an interval;
- Input to other models e.g. Marine20
Published IntCal20 provides pointwise summaries (mean and sd)

But method is Bayesian so really have \(N = 2000 \) full realisations

Realisations have lots more information than pointwise summaries

We can calibrate against realisations rather than summaries
Benefits of Realisations I: Non-normal curve posteriors

Obtain pointwise IntCal summaries at any calendar age θ by fitting normal distribution to the values of realisations at that θ:

- For most calendar ages, curve posterior is approx. normal
- Summarisation by normal is ok

But sometimes it isn’t e.g. ca. 14.75 cal kBP
- Summarisation by normal not ideal
When we create pointwise summaries we lose all covariance information on the curve.

Without covariance, then ^{14}C could flip from upper to lower bounds from one year to next (not realistic as $\Delta^{14}C$ is smooth).

LH plot - suppose we knew blue value was correct, then if no covariance, any of red dots equally likely.

RH plot - curve cannot change that much between adjacent years, with covariance can say purple much more likely.
Using Realisations as Model Input e.g. Marine20

- Marine20 used a computer model (BICYCLE) which took NH atmospheric $\Delta^{14}C$ as input variable
- Want to propagate uncertainty in atm $\Delta^{14}C$ input through model
- Use Monte Carlo, run BICYCLE with N sampled IntCal20 $\Delta^{14}C$ realisations as inputs
- Creates ensemble of N model outputs that capture uncertainty

![Diagram showing uncertainty incorporation]

- **Uncertainties Incorporated**
 - Time Varying
 - Atmospheric $\Delta^{14}C$
 - Atmospheric CO$_2$
 - Parameterized processes
 - AMOC
 - Piston Velocity

- **No Uncertainty Incorporated**
 - Other time-dependent forcings (e.g. temperatures) and other parameterized processes (e.g. isotopic fractionation factors)
Using Realisations as Model Input e.g. Marine20

- Each atmospheric 14C realisation has a paired model output
- Monte Carlo key to rigorous uncertainty quantification