Continuum modelling of grain-size segregation in bedload transport

EGU 2020

H. ROUSSEAU

R. CHASSAGNE, J. CHAUCHAT and P. FREY
Objective of this work

Bridge the gap between

Particle scale forces for size segregation (Guillard et al. 2016)

Continuum modelling of size segregation
Segregation forces on a single particle in a bath of small particles

Vertical Lagrangian equation of the large intruder:

\[\rho^p V_l \frac{dw^l}{dt} = P - \Pi_f + f_d^f + f_d^p - f_{seg} \]

- **Solid drag force:**
 \[f_{seg} = V_l \mathcal{F}(\mu) \frac{\partial P^s}{\partial z} \]
 Tripathi and Khakhar (2011) \quad \sim \quad \text{Stokesian drag force}

- **Segregation force:**
 \[f_d^p = c \pi \eta^p d_l \left(w^s - w^l\right) \]
 Guillard et al. (2016) \quad \sim \quad \text{Buoyancy force}
How to express $F(\mu)$?

2D DEM Simulations:

Segregation force:

$$f_{seg} = V_i F(\mu) \frac{\partial P_s}{\partial z}$$

From Guillard et al. (2016)
Upscaling to numerous particles...necessity of a continuum model

3 continuum phases:
- Fluid
- Large particles
- Small particles
Multi-phase flow model equations

Fluid momentum balance:

\[\rho_f \left(\frac{\partial \epsilon w_f^f}{\partial t} + \frac{\partial \epsilon w_f w_f^f}{\partial z} \right) = -\epsilon \frac{\partial p_f}{\partial z} - \rho_f g \cos \theta - n_l < f_{d \rightarrow f} > - n_s < f_{d \rightarrow s} > \]

Small particles momentum balance:

\[\rho_p \left(\frac{\partial \Phi^s w^s}{\partial t} + \frac{\partial \Phi^s w^s w^s}{\partial z} \right) = -\frac{\partial p^s}{\partial z} - \Phi^s \frac{\partial p_f}{\partial z} - \rho_p g \cos \theta + n_s < f_{d \rightarrow s} > + n_s < f_{l \rightarrow s} > \]

Large particles momentum balance:

\[\rho_p \left(\frac{\partial \Phi^l w^l}{\partial t} + \frac{\partial \Phi^l w^l w^l}{\partial z} \right) = -\frac{\partial p^l}{\partial z} - \Phi^l \frac{\partial p_f}{\partial z} - \rho_p g \cos \theta + n_l < f_{d \rightarrow f} > + n_l < f_{s \rightarrow f} > \]

\[n_l < f_{s \rightarrow f} > = \frac{\rho_p \Phi^l}{t_{ls}} (w^s - w^l) + \Phi^l \mathcal{F}(\mu) \frac{\partial p^m}{\partial z} \]
The small particles momentum balance is made dimensionless:

\[
\frac{\partial \phi^s \bar{w}^s}{\partial \tilde{t}} + \frac{\partial \phi^s \bar{w}^s}{\partial \tilde{z}} = - \frac{\tilde{p}^m}{\Phi^s} \frac{\partial \phi^s}{\partial \tilde{z}} + \frac{\phi^s}{St_f} (\bar{w}^f - \bar{w}^s) - \frac{(\bar{w}^s - \bar{w}^m)}{St_p} + \phi^l \mathcal{F}(\mu) \frac{\partial \tilde{p}^m}{\partial \tilde{z}}
\]

with

\[
St_p = \frac{\rho p d_l W}{6c_m p}
\]

\[
\phi^s \bar{w}^s = - \frac{\phi^s}{\Phi^s} \tilde{p}^m St_p \frac{\partial \phi^s}{\partial \tilde{z}} + \phi^l \phi^s \mathcal{F}(\mu) St_p \frac{\partial \tilde{p}^m}{\partial \tilde{z}}
\]

\[
\frac{\partial \phi^s}{\partial \tilde{t}} + \frac{\partial}{\partial \tilde{z}} \left(\phi^l \phi^s S_r \right) = \frac{\partial}{\partial \tilde{z}} \left(D \frac{\partial \phi^s}{\partial \tilde{z}} \right)
\]

\[
S_r = \mathcal{F}(\mu) St_p \frac{\partial \tilde{p}^m}{\partial \tilde{z}}
\]

\[
D = \frac{\phi^s \tilde{p}^m St_p}{\Phi^s}
\]
Results against DEM simulations of Chassagne et al. 2020

- Multi-phase flow model
- DEM

- Small particle dynamics is qualitatively reproduced
- Too much diffusion of small particles concentration
Comparison between the multi-phase flow model and the advection-diffusion equation
Comparison of the coefficients with the DEM

\[S_r = \mathcal{F}(\mu)St^p \frac{\partial \tilde{p}^m}{\partial \tilde{z}} \]

\[D = \frac{\phi^s \tilde{p}^m St^p}{\bar{\Phi}} \]

- Advection-diffusion
- DEM simulation