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Inferring causality: Three strands
of modern (Earth) science
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e Real experiments

vante Arhenius, 1909,
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Inferring causality: Three strands of modern (Earth) science

e Real experiments

e Earth system simulation models

P10 1. cean et conigurtion o the el

First coupled climate model: Manabe, S., and K. Bryan, 1969: Climate calculations
with a combined ocean-atmosphere model. J. Atmos. Sci, 26, 786-789
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g causality: Three strands of modern (Earth) sc

e Real experiments
e Earth system simulation models

e Observational data analysis

falker, G T. 1924. “Cor feather.” IX. Mem. Ind. Metorol. Dept. 24: 53-84.




Observational (climate) data analysis: 1st attempt

e Walker circulation: Monthly surface pressure
anomalies in the West Pacific (WPAC),
surface air temperature anomalies in the
Central Pacific (CPAC) and East Pacific
(EPACQ)

Walker (1924)




Observational (climate) data analysis: 1st attempt

e Walker circulation: Monthly surface pressure Correlatlon

anomalies in the West Pacific (WPAC),
surface air temperature anomalies in the
Central Pacific (CPAC) and East Pacific
(EPAC)

e All three regions are strongly lag-correlated
with each other ‘in all directions’

Walker (1924)




Causal inference: 1st attempt

S. Wright, Correlation and Causation, J. of Agricultural Res. 10(7), 1921
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Fi16. r.~Diagram illustrating the interrelations among the factors which determine the weight of guinea
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Causality and statistics

Karl Pearson's “Grammar of Science” (1911): “Beyond such discarded
fundamentals as ‘matter’ and ‘force’ lies still another fetish amidst the

inscrutable arcana of modern science, namely, the category of cause and
effect.”

CONTINGENCY AND CORRELATION 159
B, accurs #,, I, occurs s, times, and so on.  We thos
are able to obtain a gcncl'\l distribution of B's for each
clazs of A that we can form, and were we to go through
the whale popelstion, N, of A% in this manner we should
aldain & table of the fullowing kind .—
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Causality and statistics

Karl Pearson's “Grammar of Science” (1911): “Beyond such discarded
fundamentals as ‘matter’ and ‘force’ lies still another fetish amidst the

inscrutable arcana of modern science, namely, the category of cause and
effect.” Correlation is not causation!
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Causality and statistics

Correlation is not causation! Well... not generally, but...
[Pearl, 2000, Pearl and Mackenzie, 2018, Spirtes et al., 2000]
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Causality and statistics

Causal inference is about identifying assumptions and methods
that enable to learn causal relations from observational data

JUDEA PEARL
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Time series dataset
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Causal discovery problem

Time series dataset Causal model

X=Xy )

linear

X, = (X1, Xioa,...)




Causal discovery problem

Time series dataset Causal model
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Causal discovery problem

Time series dataset

Causal model

X! = (Xt+17 m)

X X7 = 2( t+1777t)
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Causal discovery problem

Time series dataset Causal model

X} = fY(Px1, n})
X2 = [2(Pxs, 1)
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Causal discovery problem

Time series dataset Causal graphical model
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Causal discovery problem

Time series dataset Causal graphical model

time lags X1
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Causal discovery problem

Time series dataset Causal graphical model
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Causal discovery problem

Time series dataset Causal effect (Pearl)

time lags X1
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Causal discovery problem

Time series dataset Causal effect (Pearl)
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Causal discovery problem

Time series dataset Causal graphical model
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Causal discovery problem

Time series dataset Causal graphical model
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Causal discovery problem

Time series dataset Causal graphical model

time lags X1

Py

XZ
causal

X3

X4




State of the art




State of the art: Runge et al., NatComm Perspective 2019

a Granger causality b Nonlinear state-space methods
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Challenges for causal inference




Challenges for causal inference: Runge et al., NatComm 2019

Challenges f@ ez o 0)
X
Process:
A Y
1 Autocorrelation e \ /
2 Time delays (r R
3 Nonlinear dependencies X >
4 Chaotic state-dependence ~ \ Y
5 Different time scales X
6 Noise distributions 1
\ Y
Data:

7 Variable extraction
8 Unobserved variables
9 Time subsampling
10 Time aggregation

11 Measurement errors
12 Selection bias

13 Discrete data

14 Dating uncertainties

true
missing
~#— observed

Computational / statistical:
15 Sample size

16 High dimensionality 4
17 Uncertainty estimation

q||nq( [T

1M 4

T I

CARLLTL




PCMCI causal discovery
framework




PCMCI causal discovery framework

PCMCI: Assumes time-lags (Runge et al.  Science Advances 2019)
Tigramite 4.2 python package
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PCMCI causal discovery framework

PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)
https://arxiv.org/abs/2003.03685)
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https://arxiv.org/abs/2003.03685

PCMCI causal discovery framework

PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)
https://arxiv.org/abs/2003.03685)

Time series dataset Causal graphical model
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PCMCI causal discovery framework

PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)
https://arxiv.org/abs/2003.03685)

Time series dataset
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PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)
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PCMCI causal discovery framework

PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)
https://arxiv.org/abs/2003.03685)
Enabling assumptions: Faithfulness, Markovity, Causal Sufficiency, re

contemporaneous—effeets, and stationarity

Time series dataset Causal graphical model
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PCMCI causal discovery framework

PCMCI+: Allows time-lags and contemporaneous links (Runge (2020)
https://arxiv.org/abs/2003.03685)
Enabling assumptions: Faithfulness, Markovity, Causal Sufficiency, re
contemporaneous—effeets, and stationarity

Nonlinearity and noise distributions handled by flexible conditional inde-

Time series dataset

Causal graphical model
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Problems with PC algorithm

PC algorithm skeleton discovery phase can use different conditional inde-

pendence (Cl) tests: Partial Correlation p(X; Y|S), Conditional Mutual
Information /(X; Y|S), etc.
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Problems with PC algorithm

Detection power for detecting X 4" Y | S depends on:

Sample size

Skeleton discovery phase

True process
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Problems with PC algorithm

Detection power for detecting X 4" Y | S depends on:

Sample size
Significance level apc

Skeleton discovery phase

True process
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Problems with PC algorithm

Detection power for detecting X 4" Y | S depends on:
Sample size

Significance level apc
Condition dimension, cardinality of |S|

Skeleton discovery phase True process
=2 t-1 t
X Conditional independence tests ) —®
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Problems with PC algorithm

Detection power for detecting X 4" Y | S depends on:
Sample size

Significance level apc
Condition dimension, cardinality of |S|
Effect size, i.e., magnitude of /(X; Y|S)

Skeleton discovery phase True process
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Problems with PC algorithm

Detection power for detecting X 4" Y | S depends on:

Sample size (given by dataset)

Significance level apc (hyperparameter, difficult to tune)
Condition dimension, cardinality of |S| (PC optimizes this)

Effect size, i.e., magnitude of /(X; Y|S) (Problem addressed here)

Skeleton discovery phase True process

=2

X Conditional independence tests
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Problems with PC algorithm

. . . . cVar(Z)
Consider underlying linear model, here /(Y;:; Z;) = I (1 + Var(y)>
Skeleton discovery phase True process
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X Conditional independence tests X > —0
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Problems with PC algorithm

Consider underlying linear model, here I(Y;; Z:) = 5 In (1 4 cYar(z )>

Var(Y)

= Effect size is small if Var(Y) > Var(Z), and lead to false re-

moval.
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Problems with PC algorithm

Consider underlying linear model, here I(Y;; Z:) = 5 In (1 4 cYar(z )>

Var(Y)
= Effect size is small if Var(Y) > Var(Z), and lead to false re-
moval.
Skeleton discovery phase True process
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Problems with PC algorithm

Problem: PC iterates through all adjacent conditions S and link is
removed if msin 1(X;Y|S) < |

apc

Skeleton discovery phase True process
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Problems with PC algorithm

Problem: PC iterates through all adjacent conditions S and link is
removed if msin 1(X;Y|S) < |

apc

Generally: Effect size for a link X;—, — Y} is small when conditioning

on parents of X;_, and large when conditioning on parents of Y;, i.e.,
1(X; YIP(X)) < I(X; YIP(Y)) [Runge et al., 2012a]

Skeleton discovery phase True process
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Problems with PC algorithm

Problem: PC iterates through all adjacent conditions S and link is
removed if msin 1(X;Y|S) < lope

Generally: Effect size for a link X;—, — Y} is small when conditioning
on parents of X;_, and large when conditioning on parents of Y;, i.e.,
1(X; YIP(X)) < I(X; YIP(Y)) [Runge et al., 2012a]

Skeleton discovery phase True process
p=0 p=1
t—2 t-1 t t=2 t-1 t d 1 ind d t—=2 t-1 t
Conditional independence tests
X 1 ;3 5 e
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Problems with PC algorithm

Problem: PC iterates through all adjacent conditions S and link is
removed if msin 1(X;Y|S) < |

apc

Generally: Effect size for a link X;—, — Y} is small when conditioning

on parents of X;_, and large when conditioning on parents of Y;, i.e.,
1(X; YIP(X)) < I(X; YIP(Y)) [Runge et al., 2012a]
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Problems with PC algorithm

Problem: PC iterates through all adjacent conditions S and link is removed
i msin 1(X;Y|S) < lope

=

Generally: Effect size for a link X;—, — Y} is small when conditioning
on parents of X;_, and large when conditioning on parents of Y;, i.e.,
1(X; YIP(X)) < I(X; YIP(Y)) [Runge et al., 2012a]

PC likely iterates through such conditions and removes true links.

Skeleton discovery phase True process
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Problems with PC algorithm

Removed links are not used as conditions for larger p.

Skeleton discovery phase True process
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Problems with PC algorithm

Removed links are not used as conditions for larger p.

Skeleton discovery phase True process
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Problems with PC algorithm

— False positives (incorrect links)! Then orientation phase also suffers
from wrong sepsets.

Skeleton discovery phase Orientation phase True process
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Problems with PC algorithm

Then orientation phase also suffers from wrong sepsets.

Skeleton discovery phase Orientation phase True process
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PCMCI™" causal discovery

Consider underlying true process graph.

True process
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PCMCI™" causal discovery

Consider underlying true process graph.
Associated time series graph.

True process
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PCMCI™" causal discovery

PCMCIT has 3 phases: PC; lagged phase, MCl contemporaneous phase,
Orientation phase.

-0 PC1 lagged skeleton phase

True process
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PCMCI™" causal discovery

PC; lagged phase differs from PC algorithm twofold:

-0 PC1 lagged skeleton phase

True process
p
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PCMCI™" causal discovery

PC; lagged phase differs from PC algorithm twofold:
(1) S iterates through lagged links only,

PC1 lagged skeleton phase True process
p=0
-2 -1 ¢t =2 -1 ¢t
X Conditional independence tests X > —0
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PCMCI™" causal discovery

PC; lagged phase differs from PC algorithm twofold:

(1) S iterates through lagged links only,

(2) S = {AX) i_, for every cardinality p: lagged conditions with
largest association with X{.

PC1 lagged skeleton phase True process
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e #o oo ol
XNA N7 N7 Y
z o ) z

Conditional independence tests
X ® ® g X @ Q—\:T
ParCorr GPDC CM\knn 1
Y o009
® o l VA

e




PCMCI™" causal discovery

PC; lagged phase differs from PC algorithm twofold:

(1) S iterates through lagged links only,

(2) S = {AX) i_, for every cardinality p: lagged conditions with
largest association with X{.

= much less likely to condition on “effect-size weakening” parents of
Xi s

PC1 lagged skeleton phase True process
p=0 p=1
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PCMCI™" causal discovery

PC; lagged phase differs from PC algorithm twofold:

(1) S iterates through lagged links only,

(2) S = {AX) i_, for every cardinality p: lagged conditions with
largest association with X{.

= much less likely to condition on “effect-size weakening” parents of

i
Xt—T
PC1 lagged skeleton phase True process
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PCMCI™" causal discovery

PC; converges to lagged parents plus parents of contemporaneous ances-
tors: B (X!).
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PCMCI™" causal discovery

PC; converges to lagged parents plus parents of contemporaneous ances-
tors: B (X!).

PC1 lagged skeleton phase True process
p=0 p=1 p=2
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PCMCI™" causal discovery

MCI contemporaneous phase is first initialized with lagged links B\;(X{)
and all contemporaneous links

Contemp. condition phase w/ MCI True process
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PCMCI™" causal discovery

MCI contemporaneous phase is first initialized with lagged links B\;(X{)

and all contemporaneous links

Contemp. condition phase w/ MCI
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PCMCI™" causal discovery

MCI phase iterates through contemporaneous conditions S C At(X{)
with MCI tests:

X ALX] |8, By (XX}, B (X))

Contemp. condition phase w/ MCI
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PCMCI™" causal discovery

MCI phase iterates through contemporaneous conditions S C At(X{)
with MCI tests:

X ALX] |8, By (XX}, B (X))

Contemp. condition phase w/ MCI True process
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PCMCI™" causal discovery

Conditioning on both B; (X/) and B; .(X/_.) has two important im-
plications: (1) MCI effect size larger than PC effect size, (2) MCI tests
well-calibrated (both discussed in paper)

Contemp. condition phase w/ MCI
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PCMCI™" causal discovery

Spurious links due to contemporaneous drivers are removed and sepsets
stored; converges much faster than PC algorithm, shorter runtimes.

Contemp. condition phase w/ MCI True process
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PCMCI™" causal discovery

Spurious links due to contemporaneous drivers are removed and sepsets
stored; converges much faster than PC algorithm, shorter runtimes.

Contemp. condition phase w/ MCI True process
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PCMCI™" causal discovery

Spurious links due to contemporaneous drivers are removed and sepsets
stored; converges much faster than PC algorithm, shorter runtimes.

Contemp. condition phase w/ MCI True process
p=0 p=1
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Conditional i test
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PCMCI™" causal discovery

Orientation phase as for PC algorithm.

Contemp. condition phase w/ MCI Orientation phase True process
p=0 p=1
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PCMCI™" causal discovery

Orientation phase as for PC algorithm.
Collider/unshielded triple rule: Y; is not in sepset(Y;_1,Z;) == orient

Zy = Yy

Contemp. condition phase w/ MCI
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PCMCI™" causal discovery

Orientation phase as for PC algorithm.

Collider/unshielded triple rule: Y; is not in sepset(Y;_1,Z;) == orient
Zy = Yy

Rule R1: Orient remaining unshielded tripls in other direction

Contemp. condition phase w/ MCI Orientation phase True process
p=0 p=1
-2 t-1 ot t=2 t-1 ¢t =2 t-1 ¢ =2 -1 ¢t
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PCMCI™" causal discovery

Orientation phase as for PC algorithm.

Collider/unshielded triple rule: Y; is not in sepset(Y;_1,Z;) == orient
Zy = Yy

Rule R1: Orient remaining unshielded tripls in other direction

Further rules that make use of acyclicity assumption (see paper).

Contemp. condition phase w/ MCI Orientation phase True process
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PCMCI™" causal discovery

Orientation phase as for PC algorithm.

Collider/unshielded triple rule: Y; is not in sepset(Y;_1,Z;) == orient
Zy = Yy

Rule R1: Orient remaining unshielded tripls in other direction

Further rules that make use of acyclicity assumption (see paper). PCMCI™
converges, links are repeated by assuming stationarity,

Contemp. condition phase w/ MCI Orientation phase True process
p=0 p=1
-2 t-1 ot t=2 t-1 ¢t =2 t-1 ¢ =2 -1 ¢t
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PCMCI' causal overy

In paper:

e Asymptotical consistency: PCMCIT is sound and complete

Contemp. condition phase w/ MCI True process
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PCMCI™" causal discovery

In

X
Y

VA

paper:

e Asymptotical consistency: PCMCIT is sound and complete

e Order independence (with majority rule in collider phase and conflict

resolution)

Contemp. condition phase w/ MCI
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PCMCI™" causal discovery

In paper:

e Asymptotical consistency: PCMCI™ is sound and complete
e Order independence (with majority rule in collider phase and conflict

resolution)
e Conjecture: Effect size is always greater than that of PC algorithm
min (X XJ S, B, B; > m|n (X XJ S’
g i, min X, | S, B;, B;) in, (X, | S)
Contemp. condition phase w/ MCI True process
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PCMCI™" causal discovery

In paper:
e Asymptotical consistency: PCMCI™ is sound and complete
e Order independence (with majority rule in collider phase and conflict
resolution)
e Conjecture: Effect size is always greater than that of PC algorithm
min I(X__ . Xd SBB>m|n/X’ XS
omin X X[ S,8.B) > _min I(X_, X[|'S)
e MCI tests are well-calibrated also for autocorrelated data
[Runge et al., 2019b]
Contemp. condition phase w/ MCI True process
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Numerical experiments

e random coupling topologies, time lags, linear/nonlinear
e 30% contemporaneous links, coefficients +[0.1..0.5]

e different autocorrelations for variables

® Thax = b, T =500, varying N = 2..40

e apc fixed, can be chosen via AIC

il

0
L
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Numerical experiments

Comparing with PC algo, Granger causality + PC on residuals (GCresPC),
LINGAM
N=5,T=500, Tymax=5

= PC = GCresPC = LiNGAM Pcrvlcl"‘-ril-rCorr,e:;c=0.¢‘i)5,rule=majc)rity

Autocorrelation a



Numerical experiments

High adjacency detection rate, well-controlled false positives

N=5,T=500, Tnax=5
* PC = GCresPC = LINGAM = PCMChiicor o= 0.05, rule = majority
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Numerical experiments

High precision and high recall for strong autocorrelation; LinGAM makes

use of non-Gaussianity here, fails for Gaussians

N=5,T=500, Tnax=5
* PC = GCresPC = LINGAM = PCMChiicor o= 0.05, rule = majority
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Numerical experiments

Slightly more unoriented, but also fewer conflicts (majority rule and conflict

resolution enabled)

) + N=5T=500, Tmax="5
= PC = GCresPC = LiNGAM Pcrvlcl"‘arCorr,e:;c=0.¢‘i)5,rule=majc)rity

Adjacencies Orientations Unresolved
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Numerical experiments

PC takes longer and is more variable

. N=5T=500, Tmax="5
= PC = GCresPC = LiNGAM PCrvlcli‘-e‘a'rCorr,cz=0.05,rule=majority

Adjacencies Orientations Unresolved Runtime [s]
True positives Precision Unoriented
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Numerical experiments

High dimensionality: Still well-calibrated, high recall, less precision (at this

apc)
i T=500,a=009, Tmax =2
s PC = GCresPC = LINGAM PCMCLarCorr a=0.05, rule = majority
Adjacencies Orientations Unresolved Runtime [s]
True positives _ Precision Unoriented
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Numerical experiments

Large time lags: Almost no effect on precision and recall

i N=5,1=500a=09
m PC = GCresPC = LiINGAM PCMChircorr, a =0.05, rule = majority

Adjacencies Orientations Unresolved Runtime [s]
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Numerical experiments

Nonlinear GPDC test: Higher recall than PC for high autocorrelation

N=3,T=500, Tmax=5

+
= PC = PCMCI GPDC, a = 0.01, rule = majority
Adjacencies Orientations Unresolved Runtime [s]
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Numerical experiments

Nonlinear GPDC test: Higher recall than PC for high dimensionality
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Application examples




Application cases

e Testing causal hypotheses
[Runge et al., 2014, Runge et al., 2015b, Kretschmer et al., 2016,
Runge et al., 2019b, Kretschmer et al., 2018, Runge et al., 2018,
Runge et al., 2019a, Krich et al., 2019]

&




Application cases

e Testing causal hypotheses
[Runge et al., 2014, Runge et al., 2015b, Kretschmer et al., 2016,
Runge et al., 2019b, Kretschmer et al., 2018, Runge et al., 2018,
Runge et al., 2019a, Krich et al., 2019]

e Optimal statistical prediction schemes
[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]
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Application cases

e Testing causal hypotheses
[Runge et al., 2014, Runge et al., 2015b, Kretschmer et al., 2016,
Runge et al., 2019b, Kretschmer et al., 2018, Runge et al., 2018,
Runge et al., 2019a, Krich et al., 2019]
e Optimal statistical prediction schemes
[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]
e Evaluating climate/physical models
[Schleussner et al., 2014, Nowack et al., 2019]
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Reconstructing Walker Circulation

e Monthly surface pressure anomalies in the
West Pacific (WPAC), surface air temperature
anomalies in the Central Pacific (CPAC) and
East Pacific (EPAC)

Runge et al. Nat. Comm. (2019)
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Reconstructing Walker Circulation

West Pacific (WPAC), surface air temperature -
anomalies in the Central Pacific (CPAC) and
East Pacific (EPAC)

e Correlation analysis gives a completely

e Monthly surface pressure anomalies in the Correlation
TR

connected graph

Runge et al. Nat. Comm. (2019)
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Reconstructing Walker Circulation

e Monthly surface pressure anomalies in the
West Pacific (WPAC), surface air temperature
anomalies in the Central Pacific (CPAC) and
East Pacific (EPAC)

e Correlation analysis gives a completely é;

Blvarlate GC

connected graph

N§

.. . N

e Also bivariate Granger Causality cannot X
remove indirect and common driver links

Runge et al. Nat. Comm. (2019)
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Reconstructing Walker Circulation

e Monthly surface pressure anomalies in the PCMCI

West Pacific (WPAC), surface air temperature s
anomalies in the Central Pacific (CPAC) and /&i‘\
East Pacific (EPAC) < i

e Correlation analysis gives a completely L -
connected graph RN

e Also bivariate Granger Causality cannot \f ’
remove indirect and common driver links ?

e PCMCI [Runge et al., 2019b] better identifies il HE T
the Walker circulation *Auto'strength  Link strength

Runge et al. Nat. Comm. (2019)
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Space physics

e Hypothesis on interaction between
magnetospheric Auroral Electrojet
index (AL), magnetospheric ring
current strength (SYM-H), and solar
wind parameters

z
IR )

C
B
2

7

Runge et al. Sci. Rep. (2018), At = 20min
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Space physics

e Hypothesis on interaction between

| Mutual information |

magnetospheric Auroral Electrojet
index (AL), magnetospheric ring
current strength (SYM-H), and solar
wind parameters

e Mutual information analysis gives
many dependencies

0.0 05 10 00 0.2 0.4
M., (node color) M (edge color)

Runge et al. Sci. Rep. (2018), At = 20min

resolution
DLR
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Space physics

e Hypothesis on interaction between ’

Transfer Entropy |

magnetospheric Auroral Electrojet
index (AL), magnetospheric ring
current strength (SYM-H), and solar
wind parameters

e Mutual information analysis gives
many dependencies

e Transfer Entropy cannot remove
indirect and common driver links

0.0 05 1.0 00 0.2 0.4

I12VTE (node color) IPVTE (edge color)

Runge et al. Sci. Rep. (2018), At = 20min

resolution / '
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Space physics

e Hypothesis on interaction between

magnetospheric Auroral Electrojet
index (AL), magnetospheric ring
current strength (SYM-H), and solar
wind parameters

e Mutual information analysis gives
many dependencies

e Transfer Entropy cannot remove

indirect and common driver links
den

e PCMCI yields novel insight that solar
wind is common driver of

. 0.0 05 1.0 00 0.2 0.4
magnetospheric indices 1T (node color) 1. (edge color)

Runge et al. Sci. Rep. (2018), At = 20min

resolution / i
DLR f" i
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Causal mediation analysis

e Pathway mechanisms by which El Nino . - _
. . LA J S - lags in weeks
influences Indian monsoon through -l TR—

sea-level pressure system

2 Vv 4 .
60°E 120°E 180° 120°W

-008 -004 000 004 008 -0.2 0.0 02
MCE (node color) Path coeff. (link color)

Runge et al. Nat. Comm. (2015)
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Causal mediation analysis

e Pathway mechanisms by which El Nino

j &2

) . lags in weeks
o8 ) z

influences Indian monsoon through

sea-level pressure system

e Mediated Causal Effect (MCE)
quantifies how much an intermediate { ‘
variable (node) contributes to a causal s e e 20w

-008 -004 000 004 008 -02 00 0.2
eﬂ:eCt MCE (node color) Path coeff. (link color)

Runge et al. Nat. Comm. (2015)
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Causal mediation analysis

e Pathway mechanisms by which El Nino

$

influences Indian monsoon through
sea-level pressure system

e Mediated Causal Effect (MCE)
quantifies how much an intermediate

variable (node) contributes to a causal ~~ we e e 120w
fFe —oos_—oo4 0.00 uh4-003 -0 0.2
efrect V MCE (néde colo}) V Path coeff. (link colbr)
e Linear path analysis (early approach -4 (-3 -2 -1 ¢
due to Sewall Wright in 1920s) . "
No. 1 —_—
No. 0 \
& & 4 &
Runge et al. Nat. Comm. (2015) p p
No. 33 LA

- lags in weeks
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Causal mediation analysis

e Pathway mechanisms by which El Nino

influences Indian monsoon through
sea-level pressure system

e Mediated Causal Effect (MCE)
quantifies how much an intermediate

variable (node) contributes to a causal
effect

e Linear path analysis (early approach
due to Sewall Wright in 1920s)

e Nonlinear extension in Runge Physical
Review E (2015)

Runge et al. Nat. Comm. (2015)
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Causal complex network analysis

e Complex network measures based on
extracted causal network from sea-level
pressure system

Runge et al. Nat. Comm. (2015)
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Causal complex network analysis

e Complex network measures based on
extracted causal network from sea-level
pressure system

e Global causal gateways based on
Average Causal Effect (ACE)

000 0.02 004 006
ACS (inner node) and ACE (outer ring)

Runge et al. Nat. Comm. (2015)
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Causal complex network analysis

e Complex network measures based on
extracted causal network from sea-level
pressure system

e Global causal gateways based on
Average Causal Effect (ACE)

e Here well represents tropical
atmospheric uplift regions

Runge et al. Nat. Comm. (2015)
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Causal complex network analysis

e Complex network measures based on P L N
28752 40 7517 2444 51 20
extracted causal network from sea-level (00 4 22 88° 9 8 %6 s
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pressure system - N |
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e Global causal gateways based on
Average Causal Effect (ACE) 10t/

e Here well represents tropical
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AMCE

atmospheric uplift regions THROUGH

e Global causal mediators based on
Mediated Causal Effect (MCE)

Runge et al. Nat. Comm. (2015)
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Causal model evaluation (Nowack et al., 2020)

Motivation: Simple statistics (e.g. mean, variance, trends) can be right

for the wrong reasons

Observed variable

Real world
processes

Modeled varlable

processes



Causal model evaluation (Nowack et al., 2020)

Motivation: Simple statistics (e.g. mean, variance, trends) can be right

for the wrong reasons

Observed variable

Real world
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evaluation
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Causal model evaluation (Nowack et al., 2020)

Idea: Compare climate models and observations in terms of causal rela-

tionships

Observe vanable

Real world
processes

Model
evaluation
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Modeled
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Causal model evaluation (Nowack et al., 2020)

Idea: Compare climate models and observations in terms of causal rela-

tionships
Observed data causal network
® < .@
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Causal model evaluation (Nowack et al., 2020)

Idea: Compare climate models and observations in terms of causal rela-

tionships
Observed data causal network Model data causal networks
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Causal model evaluation (Nowack et al., 2020)

Idea: Compare climate models and observations in terms of causal rela-

tionships
Observed data causal network Model data causal networks
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Causal e ¥ & s 95
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Causal model evaluation (Nowack et al., 2020)

First results: CMIP5 simulations (historical and preindustrial) vs
NCEP/NCAR reanalysis data of regional 3-day-mean sea level pressure




Causal model evaluation (Nowack et al., 2020)

Validation: Similar climate models have similar causal networks;

as network comparison metric

piControl DJF: reference MPI-ESM-P
m— —

F-score
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HadGEM2-ES
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MPI-ESM-P
MRI-CGCM3
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Causal model evaluation (Nowack et al., 2020)

Model evaluation: Significant differences

Models relative to NCEP reanalysis
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Causality benchmark platform




Causality benchmark platform CauselMe.ne

Joint work with Jordi Munoz-Mari and Gustau Camps-Valls (U Valencia)
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Causality benchmark platform CauseMe.net
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HOW IT WORKS

Causeme currently covers a wide range of synthetic model data mimicking a number of real world challenges. These cover
time delays, autocorrelation, nonlinearity, chaotic dynamics, extreme events, measurement error, and will be extended by
many more. Method developers can upload their predictions (matrices of causal connections) and the platform evaluates and
ranks the methods according to different metrics of performance. After registering and logging in, more information, datasets,
and example code snippets are given.

Challenges

Process:

1 Autocorrelation

2Time delays

3Nonlinear dependencies
4 Chaofic state-dependence
5 Different time scales

6 Noise distributions

Data:

8 Unobserved variables
9 Time subsampling

10 Time aggregation

11 Measurement errors
12 Selection bias

13 Discrete data

14 Dating uncertainties

Computational / statistical:
15 sample size

16 High dimensionality

17 Uncertainty estimation
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Joint work with Jordi Munoz-Mari and Gustau Camps-Valls (U Valencia)

JAKOB RUNGE DATA AND MODELS ~ METHODS  IfRANKING HOWTO MY RESULTS  LOGOUT

DATA AND MODELS
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Below you find a list of available datasets. Currently, they come from dynamlca{ model systems featuring different chaIIenges
for causal discovery from time series as discussed in the accompanying e Co Inica Perspective paper. At the
end of this page you find information on how to contribute real world datasets or model systems. Clicking on the model name
will bring you to a description of the model and a list of experimental datasets. Please see the CauseMe workflow description
in HowTo on how to upload your results for these experiments.

You can search through the database by name, description or tags.

Filter models:

Name Long name Type  Tags
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Below you find a list of methods applied by users of this platform. Clicking on the name will bring you to a description of the
method. You can search through the database by name, user, and tags. Register your own methods on My R ts!

Show 10 v entries

Filter methods:

Name user Tags
Jakob runge Linear, time delays, high-dimensional
Jakob runge Linear, time series, non-conditional
Jakob runge Time delays, nonlinear, non-conditional
Jakob runge Time delays, nonlinear

Jakob runge Time delays, nonlinear S 2{
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Causality benchmark platform CauseMe.net
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The table below presents a ranking of methods for different experiments and can be sorted according to the different metrics in columns. Optionally, the table can
be filtered by metric values above or below a certain threshold. For example, one can display only methods with a FPR below 6% and sort these by TPR in
decreasing order. In addition, the search field can be used on the whole table to select only particular experiments or particular methods (or both). For example,
"varmodel N-10 T-150" will list all methods with ‘varmodel' in the string and all experiments with N=10 variables and sample length T=150. See fora

description of metrics: AUC is based on scores, while F-measure, FPR, and TPR are based on binary link predictions by thresholding uploaded p-values at 0.05
(only available if p-values were uploaded). TLR requires lag predictions.

Fiter: FPR vo< v 006 Go |(Jpaper () Code © Validated

Show 100 v entries

Search: | linear-VAR_mulirealizations N
F
d user Experiment  Method (params) Paper Code Valid. Time measure | FPR | TPR | TLR BoxplotFPR  Boxplot TPR
7 3 v v v 2w 098 089 056 005 032 098
- v x v 1899 086 086 075 002 092 099
v v v o4 05 069 050 005 076 098
E] - v v v 1.24 094 070 051 005 072 098

Showing 1 o 4 of 4 entries (filtered from 1,604 total entries)
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Discussion

e Causal inference = answering causal questions from empirical
data
e Causal inference methods only give you graph
e Causal conclusions are based on assumptions
e Causal Markov Condition
e Faithfulness

Causal Sufficiency
e Time order
e Stationarity
e Assumptions on dependency types (linearity, etc) and distributions
e ...
e These sometimes cannot be tested from the same data or even any
empirical data
e Causal conclusions require to state assumptions and explain
reasons for believing them

ey

e And to indicate how conclusions are altered for different assumptions
31 T 1N 3 :ﬁ" s

o




Discussion and Conclusions

e Causal discovery from observational data is actually possible

5 i



Discussion and Conclusions

e Causal discovery from observational data is actually possible

e Many challenges stemming from nonlinear spatio-temporal nature
of system

5 i



Discussion and Conclusions

e Causal discovery from observational data is actually possible

e Many challenges stemming from nonlinear spatio-temporal nature
of system

e PCMCI+ for large-scale causal discovery




Discussion and Conclusions

e Causal discovery from observational data is actually possible

e Many challenges stemming from nonlinear spatio-temporal nature
of system

e PCMCI+ for large-scale causal discovery

e Many application cases:




Discussion and Conclusions

e Causal discovery from observational data is actually possible

e Many challenges stemming from nonlinear spatio-temporal nature
of system

e PCMCI+ for large-scale causal discovery

e Many application cases:

e Testing causal hypotheses: understanding processes, fault detection,
optimizing experimental designs

5 i



Discussion and Conclusions

e Causal discovery from observational data is actually possible

e Many challenges stemming from nonlinear spatio-temporal nature
of system

e PCMCI+ for large-scale causal discovery

e Many application cases:

e Testing causal hypotheses: understanding processes, fault detection,
optimizing experimental designs
e Causal variable selection for complex machine learning models




Discussion and Conclusions

e Causal discovery from observational data is actually possible

e Many challenges stemming from nonlinear spatio-temporal nature
of system

e PCMCI+ for large-scale causal discovery
e Many application cases:

e Testing causal hypotheses: understanding processes, fault detection,
optimizing experimental designs

e Causal variable selection for complex machine learning models

e Optimal statistical forecast schemes
[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]




Discussion and Conclusions

e Causal discovery from observational data is actually possible

e Many challenges stemming from nonlinear spatio-temporal nature
of system
e PCMCI+ for large-scale causal discovery
e Many application cases:
e Testing causal hypotheses: understanding processes, fault detection,
optimizing experimental designs
e Causal variable selection for complex machine learning models
e Optimal statistical forecast schemes
[Runge et al., 2015a, Kretschmer et al., 2017, Di Capua et al., 2019]
e Causal evaluation of physical climate models (Nowack et al., 2020)




nk you! Questions?

e PCMCI [Runge et al., 2019b] in Science Advances

e PCMCI™ Runge (2020) https://arxiv.org/abs/2003.03685
e Conditional independence testing based on CMI [Runge, 2018b] in
AISTATS
e Nature Comm. Perspective [Runge et al., 2019a]
e My software: jakobrunge.github.io/tigramite
Challenges [15]
Zmi:f%:::'z“""

Data:
7 Variable extraction
8  Unobserved variables
9 Time subsampling
10 Time aggregation

11 Measurement errors
12 Selection bia:

13 Discrete data

14 Dating uncertainties

Compunnonal / statistical:
15 Sample s

16 Highdimensionality £ 4
17 Uncertainty estimatidn



https://arxiv.org/abs/2003.03685
jakobrunge.github.io/tigramite

References i

[Runge et al., 2019b, Runge et al., 2019a, Camps-Valls et al., 20109,
Di Capua et al., 2019, Krich et al., 2019, Trifunov et al., 20192,
Trifunov et al., 2019b, Reimers et al., 2019, Runge, 2018b,

Bollt et al., 2018, Runge, 2018a, Kretschmer et al., 2018,

Tibau et al., 2018, Runge et al., 2018, Kretschmer et al., 2017,
Kretschmer et al., 2016, Runge, 2015, Runge et al., 2015a,

Runge et al., 2015b, Runge et al., 2014, Schleussner et al., 2014,
Runge et al., 2012b, Runge et al., 2012a, Pompe and Runge, 2011]

[§ Bollt, E. M., Sun, J., and Runge, J. (2018).
Introduction to Focus Issue: Causation inference and
information flow in dynamical systems: Theory and
applications.

Chaos An Interdiscip. J. Nonlinear Sci., 28(7):075201.




References ii

@ Camps-Valls, G., Sejdinovic, D., Runge, J., and Reichstein, M.
(2019).
A perspective on gaussian processes for earth observation.
National Science Review.

@ Di Capua, G., Kretschmer, M., Runge, J., Alessandri, A., Donner,
R., van den Hurk, B., Vellore, R., Krishnan, R., and Coumou, D.
(2019).

Long-lead statistical forecasts of the indian summer monsoon

rainfall based on causal precursors.
Weather and Forecasting, 34(5):1377-1394.




References iii

@ Kretschmer, M., Cohen, J., Matthias, V., Runge, J., and Coumou,
D. (2018).
The different stratospheric influence on cold-extremes in
Eurasia and North America.
npj Climate and Atmospheric Sciences, 1(1):44.

@ Kretschmer, M., Coumou, D., Donges, J. F., and Runge, J. (2016).

Using causal effect networks to analyze different arctic drivers
of midlatitude winter circulation.
Journal of Climate, 29(11):4069-4081.

[§ Kretschmer, M., Runge, J., and Coumou, D. (2017).
Early prediction of weak stratospheric polar vortex states using

causal precursors.
Geophysical Research Letters, 44(16):8592-8600.




References iv

@ Krich, C., Runge, J., Miralles, D. G., Migliavacca, M., Perez-Priego,
O., E-Madany, T. S., Carrara, A., and Mahecha, M. D. (2019).
Causal networks of biosphere—atmosphere interactions.
Biogeosciences Discussions.

[ Nowack, P. J., Runge, J., Eyring, V., and Haigh, H. D. (2019).
Causal teleconnection fingerprints for climate model

evaluation.
Nature Communications, minor revision.

[ Pearl, J. (2000).
Causality: Models, Reasoning, and Inference.
Cambridge University Press, New York, NY.




References v

B

[

Pearl, J. and Mackenzie, D. (2018).
The Book of Why: The New Science of Cause and Effect.

Basic books, New York.

Pompe, B. and Runge, J. (2011).

Momentary information transfer as a coupling measure of time
series.

Physical Review E, 83(5):1-12.

Reimers, C., Runge, J., and Denzler, J. (2019).

Using causal inference to globally understand black box
predictors beyond saliency maps.

In 9th Int. Work. Clim. Informatics, pages 1-4.




References vi

[8 Runge, J. (2015).
Quantifying information transfer and mediation along causal
pathways in complex systems.
Physical Review E, 92(6):062829.

[3 Runge, J. (2018a).
Causal network reconstruction from time series: From

theoretical assumptions to practical estimation.
Chaos An Interdiscip. J. Nonlinear Sci., 28(7):075310.

[4 Runge, J. (2018b).
Conditional independence testing based on a nearest-neighbor

estimator of conditional mutual information.
In Storkey, A. & Perez-Cruz, F., editor, Proc. 21st Int. Conf. Artif.
Intell. Stat. Playa Blanca, Lanzarote, Canary Islands: PMLR.




References vii

@ Runge, J., Balasis, G., Daglis, I. A., Papadimitriou, C., and Donner,
R. V. (2018).
Common solar wind drivers behind magnetic
storm—magnetospheric substorm dependency.
Scientific Reports, 8(1):16987.

@ Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D.,
Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M. D.,
Mufnoz-Mari, J., van Nes, E. H., Peters, J., Quax, R., Reichstein, M.,
Scheffer, M., Scholkopf, B., Spirtes, P., Sugihara, G., Sun, J.,
Zhang, K., and Zscheischler, J. (2019a).

Inferring causation from time series in earth system sciences.

Nature Communications, 10(1):2553.




References viii

@ Runge, J., Donner, R. V., and Kurths, J. (2015a).
Optimal model-free prediction from multivariate time series.
Physical Review E, 91(5):052909.

@ Runge, J., Heitzig, J., Marwan, N., and Kurths, J. (2012a).
Quantifying causal coupling strength: A lag-specific measure
for multivariate time series related to transfer entropy.
Physical Review E, 86(6):061121.

E Runge, J., Heitzig, J., Petoukhov, V., and Kurths, J. (2012b).
Escaping the Curse of Dimensionality in Estimating
Multivariate Transfer Entropy.

Phys. Rev. Lett., 108(25):258701.




References ix

@ Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic,

D. (2019b).
Detecting causal associations in large nonlinear time series

datasets.
Science Advances, eaau4996(5).

@ Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay, N.,
Vejmelka, M., Hartman, D., Marwan, N., Palu§, M., and Kurths, J.
(2015b).

Identifying causal gateways and mediators in complex
spatio-temporal systems.
Nature Communications, 6:8502.




References x

@ Runge, J., Petoukhov, V., and Kurths, J. (2014).
Quantifying the Strength and Delay of Climatic Interactions:
The Ambiguities of Cross Correlation and a Novel Measure
Based on Graphical Models.
Journal of Climate, 27(2):720-739.

@ Schleussner, C.-F., Runge, J., Lehmann, J., and Levermann, A.
(2014).
The role of the North Atlantic overturning and deep ocean for
multi-decadal global-mean-temperature variability.
Earth Syst. Dyn., 5(1):103-115.

[§ Spirtes, P., Glymour, C., and Scheines, R. (2000).
Causation, Prediction, and Search.
MIT Press, Boston.




References xi

@ Tibau, X.-a., Requena-Mesa, C., Reimers, C., Denzler, J., Eyring, V.,
Reichstein, M., and Runge, J. (2018).
SupernoVAE : VAE based kernel PCA for analysis of
spatio-temporal Earth data.
In 8th Int. Work. Clim. Informatics, pages 1-4.

@ Trifunov, V. T., Shadaydeh, M., Runge, J., Eyring, V., Reichstein,
M., and Denzler, J. (2019a).
Causal link estimation under hidden confounding in ecological
time series.
In 9th Int. Work. Clim. Informatics, pages 1-4.




References xii

@ Trifunov, V. T., Shadaydeh, M., Runge, J., Eyring, V., Reichstein,
M., and Denzler, J. (2019b).
Nonlinear causal link estimation under hidden confounding
with an application to time-series anomaly detection.
In German Conference on Pattern Recognition (GCPR), pages 1-4.




	Inferring causality: Three strands of modern (Earth) science
	Causal discovery problem
	State of the art
	Challenges for causal inference
	PCMCI causal discovery framework
	Application examples
	Causality benchmark platform
	Discussion and Conclusions
	Appendix

