
Spatial conditional extremes via the Gibbs
sampler

Adrian Casey
School of Mathematics
University of Edinburgh

April 28, 2020

1 / 23



Data

I The wave height data consists of 1680 hindcast observations
of significant wave height during storms measured at 150
locations.

I Sites arranged on an approximate grid in the North Sea, with
axes running NE-SW and SE-NW.

I The data includes the wind direction at each site for each
storm. Extremes are dependent upon this variable.
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Wind direction
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Heffernan & Tawn

Suppose that X is a random vector with exponential marginal
distributions. We condition on the random variable Xk being above
a high threshold u. Let X−k be the other components of the
vector. The conditional model rests on the relatively weak
assumption that, given Xi > u there exist vector functions
ak : R→ Rd−1 and bk : R→ Rd−1 such that,

Pr

{
Xk − u > y ,

X−k − ak(Xk)

bk(Xk)
≤ z|Xk > u

}
→ exp(−y)G k(z), u →∞. (1)
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Spatial extremes

Questions that might be asked:

I How many sites are likely to experience extreme values
simultaneously?

I Given an extreme value at one location, what is the
distribution of values at other sites ?

Particular issues:

I Asymptotics give no general form for the distribution G k(z).
In spatial statistics this distribution will be high-dimensional
and so difficult to model outside the Gaussian framework.

I An alternative approach is the graphical extremes methods
outlined in the recent paper by Engelke & Hitz. This has the
disadvantage of assuming asymptotic dependence, which is
generally not the case in spatial statistical problems.
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Gaussian Markov random fields

Let {si} be a set of sites with associated random variables
{X (si )}. Let ∆i be the neighbourhood ( the Markov blanket) of
X (si ). For a Gaussian distibution N (0,Q−1) and precision matrix
Qij=Q(si , sj),

E [X (si )] = −
∑
sj∈∆i

Qij

Qii
X (sj), (2)

Var [X (si )] =
1

Qii
. (3)
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∆i for first order GMRF
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A local extreme value model

Assume that, for a range of (positively dependent) MRFs with
exponential margins, there exists a scalar function acting on the
neighbourhood of site i a∆(X∆i

) such that ,

Z =
X (si )− αa∆(X∆i

)

(a∆(X∆i
))β

∼ G , (4)

a∆(X∆i
) > u (5)

where G is a non-degenerate univariate distribution function, with
convergence above some high threshold value u.
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The function a∆

We propose a form for the function a∆ which is homogeneous in
each of the components in the neighbourhood. This function arises
in the analysis of asymptotically independent kth order Markov
chains.

a∆(X∆i
) =

∑
j∈∆i

γj(γjX (sj))δ


1/δ

(6)

∑
j∈∆i

γj = 1, δ > 0 (7)
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Example:GMRF

Consider the GMRF in Slide 6, drop the i suffix and and set

βj =
Q(si ,sj )
Q(si ,si )

, σ = 1
Q(si ,si )

, then it can be shown that,

a∆(X∆) =

∑
j∈∆

γj(γjXj)
1/2

2

, (8)

γj =
β

2/3
j∑
k β

2/3
k

(9)

β = 0.5 (10)

α =
∑
k

β
2/3
k (11)

Z ∼ N(0,
√

2σ) (12)
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The Gibbs sampler

The Gibbs sampling method is a method of sampling from the full
joint distribution by sequential sampling from a series of conditional
distributions. So the method follows the following pattern,

Draw x∗1 from f (X (s1)|X (s2) = x2 . . .X(sn) = xn)

Draw x∗2 from f (X (s2)|X (s1) = x∗1 ,X (s3) = x3, . . .X (sn) = xn)

...

I This method is often applied to GMRFs because the
conditioning set is reduced to the neighbourhood at each
point. The existence of this local model suggests a path to
sampling from the full joint distribution of {X (s1), . . .X (sn)},
given that the vector at some site, say X (s1), is extreme.
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The Gibbs sampler algorithm

Algorithm 1: A Gibbs sampler for a local extreme model
Data: Regular lattice data
Result: A distribution that allows effective extrapolation to higher quantiles of

conditional extremes
1 Initialization; Set the lattice values to a random sample from the exponential

distribution . One site is set to be above some threshold
2 while samples < N do
3 while i < n do
4 read current lattice values {X (s1), . . .X (sn)};
5 if i = 1 then
6 sample from u + Exp(1);
7 else if The neighbourhood function a∆(X∆i

) > u then
8 Simulate a value from the fitted local extremes model;
9 Replace X (si ) with that value;

10 else
11 simulate a new value from some model of the bulk density

f (X (si ) | X (sj ) : j 6= i) ;
12 Replace X (si ) with that value;

13 After one sweep of the lattice, save as sample;
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Working through the lattice

X1

X5

X3X4

X8

X2

Figure 1: a∆(X∆1 ) > u, so use local model samplea∆(X∆2 ) < u so use a
bulk model to sample X2, here dependent on 8 neighbours.
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Fitting a local extremes model to data

Asuming stationarity, we seek a model for the dependence of a site
X (si ) on the four nearest lattice points.

X (si )|∆i = αa∆(X∆i
) + a∆(X∆i

)βZ , a∆(X∆i
) > u, (13)

a∆(X∆i
) =

∑
j∈∆i

γj(γjX (sj))δ


1/δ

(14)

∑
j∈∆i

γj = 1, δ > 0 (15)

i = 1 . . . n. (16)
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Fitting a local extremes model to data
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Fitting a model for the bulk distribution

We need a model for the conditional distribution applicable in the
non-extreme region,

p(X (si )|X (sj) : j 6= i). (17)

The modelling strategy chosen for this step is to first transform the
data to normal scale and then to fit a linear model to each full
conditional in turn. In order to avoid over-fitting and to manage
the number of parameters in this model, a Lasso is applied.
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Parameter stability

Quantile γ1 γ2 γ3 γ4 β δ α

0.92 0.27 0.23 0.28 0.22 0.36 0.86 4.00

0.95 0.27 0.23 0.28 0.22 0.16 0.91 3.98

0.975 0.29 0.22 0.28 0.20 0.01 0.75 3.96

0.99 0.25 0.26 0.26 0.24 0.02 1.43 4.12

Table 1: Table showing parameter stability in Θ1
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Sample from data
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Realisation from the Gibbs sampler
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Expected extreme waves in the same storm

I Simulation based on 3000 Gibbs sampling results with a 1000
sample burn-in.

I Results

Extreme quantile Data Simulation

0.95 102.80 108.80
0.975 90.72 92.64
0.99 86.85 88.65
0.995 78.80 68.00
0.999 NA 28.80

Table 2: Expected number of sites with a wave in the extreme
quantile, given a similarly extreme wave at site 1.
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Conclusions and next steps

I Generally encouraging results for this method of conditional
spatial extremes.

I Significant problems remain.
I Boundary conditions.
I Non-stationarity and wind dependence.
I The method relies on some knowledge of the distribution of

a∆.
I Analysis of the distribution
{X (s1), . . . ,X (sn)} | max{X (s1), . . . ,X (sn)} > u is
computationally demanding.
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