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Data

» The wave height data consists of 1680 hindcast observations
of significant wave height during storms measured at 150
locations.

» Sites arranged on an approximate grid in the North Sea, with
axes running NE-SW and SE-NW.

» The data includes the wind direction at each site for each
storm. Extremes are dependent upon this variable.
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Data

Location of sites
colour shows number of extremes (0.975 quantile)
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Wind direction

Number of storms with extreme waves
vs wind direction at site 1
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Heffernan & Tawn

Suppose that X is a random vector with exponential marginal
distributions. We condition on the random variable X) being above
a high threshold u. Let X_j be the other components of the
vector. The conditional model rests on the relatively weak
assumption that, given X; > u there exist vector functions

a“ : R—> R ! and b : R — R91 such that,

X,k — ak(Xk)

Pr {Xk —u>y, bk(X )
k

< Z‘Xk > U}

— exp(—y)G*(2), u— 0. (1)
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Spatial extremes

Questions that might be asked:

» How many sites are likely to experience extreme values
simultaneously?

» Given an extreme value at one location, what is the
distribution of values at other sites ?

Particular issues:

» Asymptotics give no general form for the distribution G¥(z).
In spatial statistics this distribution will be high-dimensional
and so difficult to model outside the Gaussian framework.

» An alternative approach is the graphical extremes methods
outlined in the recent paper by Engelke & Hitz. This has the
disadvantage of assuming asymptotic dependence, which is
generally not the case in spatial statistical problems.
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Gaussian Markov random fields

Let {s;} be a set of sites with associated random variables
{X(si)}. Let A; be the neighbourhood ( the Markov blanket) of
X(s;). For a Gaussian distibution A/(0, Q1) and precision matrix

Qiji=Q(si, s;).

EX(s)] = - Y X (), @)
S;EA; "
VarlX(s)] = — 3)

Qiii-
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A, for first order GMRF
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A local extreme value model

Assume that, for a range of (positively dependent) MRFs with
exponential margins, there exists a scalar function acting on the
neighbourhood of site i aan(Xa,) such that ,

X(si) — @an(Xa,)
(aa(Xa;))?
aA(XAi) >u (5)

/=

~ G, (4)

where G is a non-degenerate univariate distribution function, with
convergence above some high threshold value u.
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The function ap

We propose a form for the function ap which is homogeneous in
each of the components in the neighbourhood. This function arises
in the analysis of asymptotically independent k" order Markov

chains.
1/6
an(Xa,) = Y vi(uX(s))° (6)
JEA;
=1, >0 (7)

JEA;
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Example:GMRF

Consider the GMRF in Slide 6, drop the j suffix and and set

Bj = Q(si,s))

1 .
Q(S,,S,) Q(Siysi)' then it can be shown that,

2
Z ryf ry./ 1/2 )
JEA

. 52/3

J 2/3
> 82

B=05

o= 2,82/3
(0, \fa)
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The Gibbs sampler

The Gibbs sampling method is a method of sampling from the full
joint distribution by sequential sampling from a series of conditional
distributions. So the method follows the following pattern,

Draw xq from f(X(s1)[X(s2) = x2... X(Sn) = Xn)
Draw x5 from f(X(s2)|X(s1) = x1, X(s3) = x3,...X(Sp) = Xn)

» This method is often applied to GMRFs because the
conditioning set is reduced to the neighbourhood at each
point. The existence of this local model suggests a path to
sampling from the full joint distribution of {X(s1),...X(sn)},
given that the vector at some site, say X(s1), is extreme.
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The Gibbs sampler algorithm

1

Algorithm 1: A Gibbs sampler for a local extreme model

Data: Regular lattice data
Result: A distribution that allows effective extrapolation to higher quantiles of
conditional extremes
Initialization; Set the lattice values to a random sample from the exponential
distribution . One site is set to be above some threshold
while samples < N do
while / < n do
read current lattice values {X(s1),...X(sn)};
if i =1 then
| sample from u + Exp(1);
else if The neighbourhood function ap(Xa,;) > u then
Simulate a value from the fitted local extremes model;
Replace X(s;) with that value;
else
simulate a new value from some model of the bulk density
FX(s) | X(s)) 1 # 1) :
Replace X(s;) with that value;

| After one sweep of the lattice, save as sample;
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Working through the lattice

c o o 0 C
Figure 1: aa(Xa,) > u, so use local model sampleaa(Xa,) < u so use a
bulk model to sample X5, here dependent on 8 neighbours.
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Fitting a local extremes model to data

Asuming stationarity, we seek a model for the dependence of a site

X(s;) on the four nearest lattice points.

X(S,’)|A,’ = aaA(XA,.) + aA(XAi)BZ, aA(XA,.) > u,

1/6
an(Xa,) =19 > v(uX(s))’
JEA;
Z Y= 1, 6>0
JEA;
i=1...n.

(13)

(14)

(15)
(16)
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Fitting a local extremes model to data
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Fitting a model for the bulk distribution

We need a model for the conditional distribution applicable in the
non-extreme region,

p(X(s)IX(sp) = # 1)- (17)

The modelling strategy chosen for this step is to first transform the
data to normal scale and then to fit a linear model to each full
conditional in turn. In order to avoid over-fitting and to manage
the number of parameters in this model, a Lasso is applied.
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Parameter stability

Quantile | 7 | 72| 13| 7 54 J o
092 | 027 | 023 ] 0.28 | 0.22 | 0.36 | 0.86 | 4.00
095027023028 0.22]0.16 |0.91 | 3.98

0.975 |1 0.29 | 0.22 | 0.28 | 0.20 | 0.01 | 0.75 | 3.96
099 | 0251026 | 026|024 | 002|143 | 4.12

Table 1: Table showing parameter stability in ©
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Sample from data

Real sample with site 1 near the 0.975 quantile,

colour shows value at site.
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Realisation from the Gibbs sampler

Realisation with site 1 near the 0.975 quantile,
colour shows value at site.
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Expected extreme waves in the same storm

» Simulation based on 3000 Gibbs sampling results with a 1000

sample burn-in.

» Results

Extreme quantile Data | Simulation
0.95 102.80 108.80
0.975 90.72 92.64
0.99 86.85 88.65
0.995 78.80 68.00
0.999 NA 28.80

Table 2: Expected number of sites with a wave in the extreme

quantile, given a similarly extreme wave at site 1.
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Conclusions and next steps

» Generally encouraging results for this method of conditional
spatial extremes.
» Significant problems remain.

» Boundary conditions.

» Non-stationarity and wind dependence.

» The method relies on some knowledge of the distribution of
an.

> Analysis of the distribution
{X(Sl)a cee 7X(5n)} | maX{X(Sl)a s aX(Sn)} > uis
computationally demanding.



References

S. Engelke and A. S. Hitz. Graphical models for extremes. arXiv preprint
arXiv:1812.01734, 2018.

J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate
extreme values (with discussion). Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 66(3):497-546, 2004.

|. Papastathopoulos and J. A. Tawn. Extreme events of higher-order
markov chains: hidden tail chains and extremal yule-walker equations.
arXiv preprint arXiv:1903.04059, 2019.

M. Reistad, @. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and
J.-R. Bidlot. A high-resolution hindcast of wind and waves for the

north sea, the norwegian sea, and the barents sea. Journal of
Geophysical Research: Oceans, 116(C5), 2011.

23/23



	Preliminaries
	Application & results
	Heffernan & Tawn
	Spatial Extremes
	Gaussian Markov random fields

	Methods
	A local extreme value model
	The function a
	Example
	Deriving a full joint distribution
	The Gibbs sampler
	Deriving a full joint distribution


