Spatial conditional extremes via the Gibbs sampler

Adrian Casey

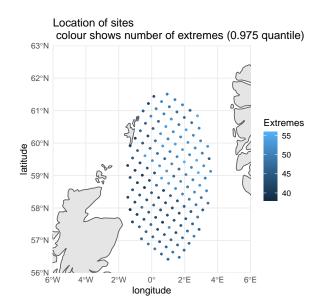
School of Mathematics University of Edinburgh

April 28, 2020

Data

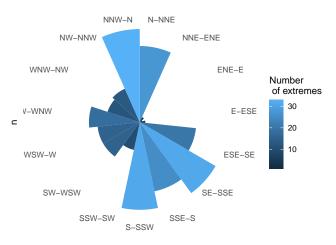
- ► The wave height data consists of 1680 hindcast observations of significant wave height during storms measured at 150 locations.
- Sites arranged on an approximate grid in the North Sea, with axes running NE-SW and SE-NW.
- ► The data includes the wind direction at each site for each storm. Extremes are dependent upon this variable.

Data



Wind direction

Number of storms with extreme waves vs wind direction at site 1



Wind direction at site 1

Heffernan & Tawn

Suppose that X is a random vector with exponential marginal distributions. We condition on the random variable X_k being above a high threshold u. Let X_{-k} be the other components of the vector. The conditional model rests on the relatively weak assumption that, given $X_i > u$ there exist vector functions $\mathbf{a}^k : \mathbb{R} \to \mathbb{R}^{d-1}$ and $\mathbf{b}^k : \mathbb{R} \to \mathbb{R}^{d-1}$ such that,

$$\Pr\left\{X_k - u > y, \frac{\mathbf{X}_{-k} - \mathbf{a}^{\mathbf{k}}(X_k)}{\mathbf{b}^{\mathbf{k}}(X_k)} \le \mathbf{z}|X_k > u\right\} \\ \to \exp(-y)G^{\mathbf{k}}(\mathbf{z}), \quad u \to \infty. \quad (1)$$

Spatial extremes

Questions that might be asked:

- ► How many sites are likely to experience extreme values simultaneously?
- ► Given an extreme value at one location, what is the distribution of values at other sites ?

Particular issues:

- Asymptotics give no general form for the distribution G^k(z). In spatial statistics this distribution will be high-dimensional and so difficult to model outside the Gaussian framework.
- An alternative approach is the graphical extremes methods outlined in the recent paper by Engelke & Hitz. This has the disadvantage of assuming asymptotic dependence, which is generally not the case in spatial statistical problems.

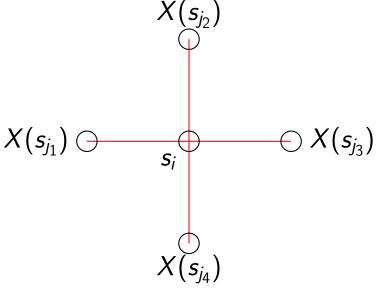
Gaussian Markov random fields

Let $\{s_i\}$ be a set of sites with associated random variables $\{X(s_i)\}$. Let Δ_i be the neighbourhood (the Markov blanket) of $X(s_i)$. For a Gaussian distibution $\mathcal{N}(0,Q^{-1})$ and precision matrix $Q_{ij}=Q(s_i,s_j)$,

$$E[X(s_i)] = -\sum_{s_i \in \Delta_i} \frac{Q_{ij}}{Q_{ii}} X(s_j), \qquad (2)$$

$$Var[X(s_i)] = \frac{1}{Q_{ii}}. (3)$$

Δ_i for first order GMRF



A local extreme value model

Assume that, for a range of (positively dependent) MRFs with exponential margins, there exists a scalar function acting on the neighbourhood of site i $a_{\Delta}(X_{\Delta_i})$ such that ,

$$Z = \frac{X(s_i) - \alpha a_{\Delta}(X_{\Delta_i})}{(a_{\Delta}(X_{\Delta_i}))^{\beta}} \sim G, \tag{4}$$

$$a_{\Delta}(X_{\Delta_i}) > u \tag{5}$$

where G is a non-degenerate univariate distribution function, with convergence above some high threshold value u.

The function a_{Δ}

We propose a form for the function a_{Δ} which is homogeneous in each of the components in the neighbourhood. This function arises in the analysis of asymptotically independent k^{th} order Markov chains.

$$a_{\Delta}(X_{\Delta_i}) = \left\{ \sum_{j \in \Delta_i} \gamma_j(\gamma_j X(s_j))^{\delta} \right\}^{1/\delta}$$
 (6)

$$\sum_{j \in \Delta_i} \gamma_j = 1, \quad \delta > 0 \tag{7}$$

Example: GMRF

Consider the GMRF in Slide 6, drop the i suffix and and set $\beta_j = \frac{Q(s_i, s_j)}{Q(s_i, s_i)}$, $\sigma = \frac{1}{Q(s_i, s_i)}$, then it can be shown that,

$$a_{\Delta}(X_{\Delta}) = \left(\sum_{j \in \Delta} \gamma_j (\gamma_j X_j)^{1/2}\right)^2, \tag{8}$$

$$\gamma_j = \frac{\beta_j^{2/3}}{\sum_k \beta_k^{2/3}} \tag{9}$$

$$\beta = 0.5 \tag{10}$$

$$\alpha = \sum_{k} \beta_k^{2/3} \tag{11}$$

$$Z \sim N(0, \sqrt{2}\sigma) \tag{12}$$

The Gibbs sampler

The Gibbs sampling method is a method of sampling from the full joint distribution by sequential sampling from a series of conditional distributions. So the method follows the following pattern,

Draw
$$x_1^*$$
 from $f(X(s_1)|X(s_2) = x_2 \dots X_(s_n) = x_n)$
Draw x_2^* from $f(X(s_2)|X(s_1) = x_1^*, X(s_3) = x_3, \dots X(s_n) = x_n)$
 \vdots

This method is often applied to GMRFs because the conditioning set is reduced to the neighbourhood at each point. The existence of this local model suggests a path to sampling from the full joint distribution of $\{X(s_1), \dots X(s_n)\}$, given that the vector at some site, say $X(s_1)$, is extreme.

The Gibbs sampler algorithm

Algorithm 1: A Gibbs sampler for a local extreme model

Data: Regular lattice data

Result: A distribution that allows effective extrapolation to higher quantiles of conditional extremes

1 Initialization; Set the lattice values to a random sample from the exponential distribution. One site is set to be above some threshold

```
2 while samples < N do
         while i < n \text{ do}
 3
              read current lattice values \{X(s_1), \dots X(s_n)\};
              if i = 1 then
 5
                   sample from u + Exp(1);
 6
              else if The neighbourhood function a_{\Delta}(X_{\Delta_i}) > u then
 7
                   Simulate a value from the fitted local extremes model;
 8
                   Replace X(s_i) with that value;
 9
10
              else
                   simulate a new value from some model of the bulk density
11
                     f(X(s_i) \mid X(s_i) : j \neq i);
                   Replace X(s_i) with that value;
12
13
```

After one sweep of the lattice, save as sample;

Working through the lattice

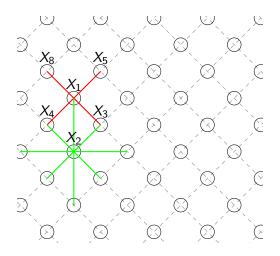


Figure 1: $a_{\Delta}(X_{\Delta_1}) > u$, so use local model sample $a_{\Delta}(X_{\Delta_2}) < u$ so use a bulk model to sample X_2 , here dependent on 8 neighbours.

Fitting a local extremes model to data

Assuming stationarity, we seek a model for the dependence of a site $X(s_i)$ on the four nearest lattice points.

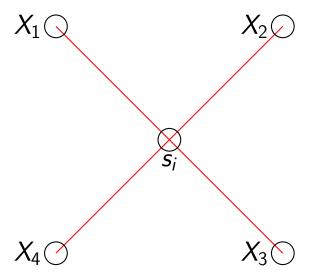
$$X(s_i)|\Delta_i = \alpha a_{\Delta}(X_{\Delta_i}) + a_{\Delta}(X_{\Delta_i})^{\beta} Z, \quad a_{\Delta}(X_{\Delta_i}) > u,$$
 (13)

$$a_{\Delta}(X_{\Delta_i}) = \left\{ \sum_{j \in \Delta_i} \gamma_j(\gamma_j X(s_j))^{\delta} \right\}^{1/\delta}$$
 (14)

$$\sum_{j \in \Delta_i} \gamma_j = 1, \quad \delta > 0 \tag{15}$$

$$i=1\ldots n. \tag{16}$$

Fitting a local extremes model to data



Fitting a model for the bulk distribution

We need a model for the conditional distribution applicable in the non-extreme region,

$$p(X(s_i)|X(s_j):j\neq i). (17)$$

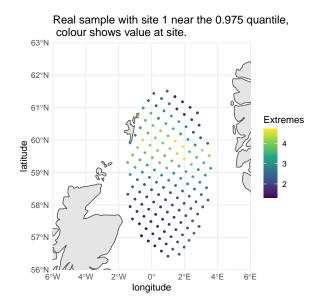
The modelling strategy chosen for this step is to first transform the data to normal scale and then to fit a linear model to each full conditional in turn. In order to avoid over-fitting and to manage the number of parameters in this model, a Lasso is applied.

Parameter stability

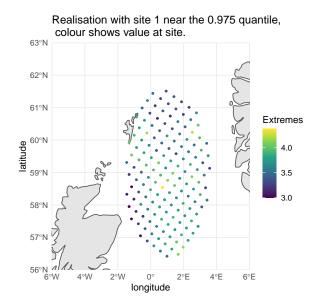
Quantile	γ_1	γ_2	γ_3	γ_4	β	δ	α
0.92	0.27	0.23	0.28	0.22	0.36	0.86	4.00
0.95	0.27	0.23	0.28	0.22	0.16	0.91	3.98
0.975	0.29	0.22	0.28	0.20	0.01	0.75	3.96
0.99	0.25	0.26	0.26	0.24	0.02	1.43	4.12

Table 1: Table showing parameter stability in Θ_1

Sample from data



Realisation from the Gibbs sampler



Expected extreme waves in the same storm

- Simulation based on 3000 Gibbs sampling results with a 1000 sample burn-in.
- Results

Extreme quantile	Data	Simulation	
0.95	102.80	108.80	
0.975	90.72	92.64	
0.99	86.85	88.65	
0.995	78.80	68.00	
0.999	NA	28.80	

Table 2: Expected number of sites with a wave in the extreme quantile, given a similarly extreme wave at site 1.

Conclusions and next steps

- Generally encouraging results for this method of conditional spatial extremes.
- Significant problems remain.
 - Boundary conditions.
 - ► Non-stationarity and wind dependence.
 - ▶ The method relies on some knowledge of the distribution of a_{Δ} .
 - Analysis of the distribution $\{X(s_1), \ldots, X(s_n)\} \mid \max\{X(s_1), \ldots, X(s_n)\} > u$ is computationally demanding.

References

- S. Engelke and A. S. Hitz. Graphical models for extremes. *arXiv preprint* arXiv:1812.01734, 2018.
- J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate extreme values (with discussion). *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 66(3):497–546, 2004.
- I. Papastathopoulos and J. A. Tawn. Extreme events of higher-order markov chains: hidden tail chains and extremal yule-walker equations. arXiv preprint arXiv:1903.04059, 2019.
- M. Reistad, Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik, and J.-R. Bidlot. A high-resolution hindcast of wind and waves for the north sea, the norwegian sea, and the barents sea. *Journal of Geophysical Research: Oceans*, 116(C5), 2011.

