

Analysis of multi-year near-surface ozone observations at the WMO/GAW "Concordia" station, Antarctica

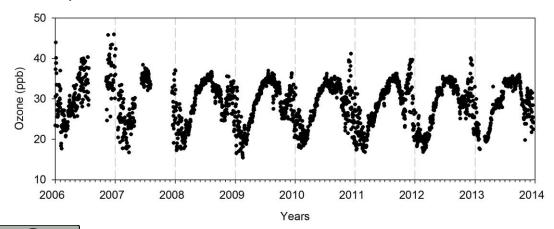
<u>Davide Putero</u>¹, Rita Traversi², Angelo Lupi³, Francescopiero Calzolari¹, Maurizio Busetto¹, Laura Tositti⁴, Stefano Crocchianti⁵, Paolo Cristofanelli¹

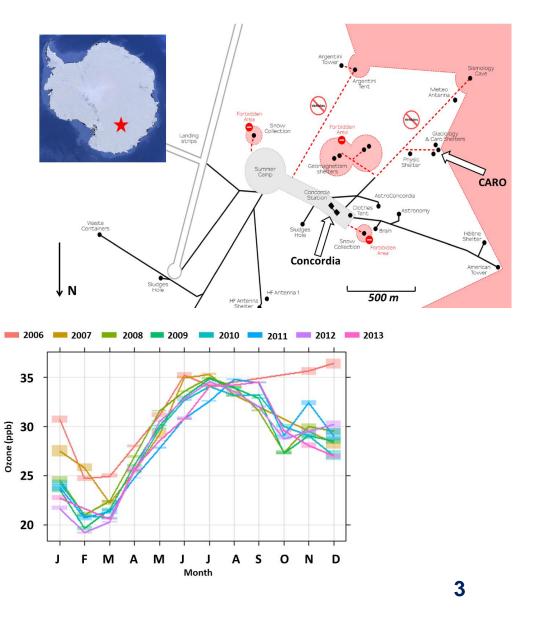
¹CNR-ISAC, Bologna, Italy (<u>d.putero@isac.cnr.it</u>)
²University of Florence, Florence, Italy
³CNR-ISP, Bologna, Italy
⁴University of Bologna, Bologna, Italy
⁵University of Perugia, Perugia, Italy

Outline

- Near-surface ozone (O₃) variability at Dome C
- Ozone Enhancement Events (OEEs)
- Possible influence of TCO
- Role of synoptic-scale air mass transport
- Role of deep stratospheric transport
- Upcoming work: the STEAR project

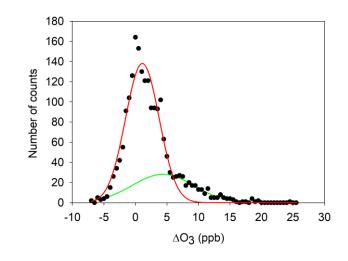
Analysis of multi-year near-surface ozone observations at the WMO/GAW "Concordia" station (75°06′S, 123°20′E, 3280 m a.s.l. – Antarctica)

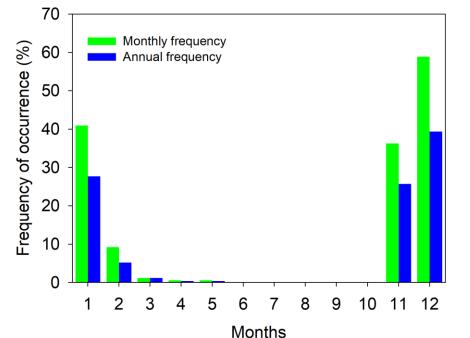

Paolo Cristofanelli^{a,*}, Davide Putero^a, Paolo Bonasoni^a, Maurizio Busetto^a, Francescopiero Calzolari^a, Giuseppe Camporeale^d, Paolo Grigioni^b, Angelo Lupi^a, Boyan Petkov^a, Rita Traversi^c, Roberto Udisti^c, Vito Vitale^a



Ozone variability at Dome C

- WMO/GAW "Concordia" station (Dome C) in the Eastern Antarctic plateau (3280 m a.s.l.)
- Location not strongly affected by katabatic winds, prevalent SW wind direction
- Near-surface O₃ measurements performed with different UV absorption analyzers (Thermo Tei 49C, Thermo Tei 49i, and Dasibi 1108)

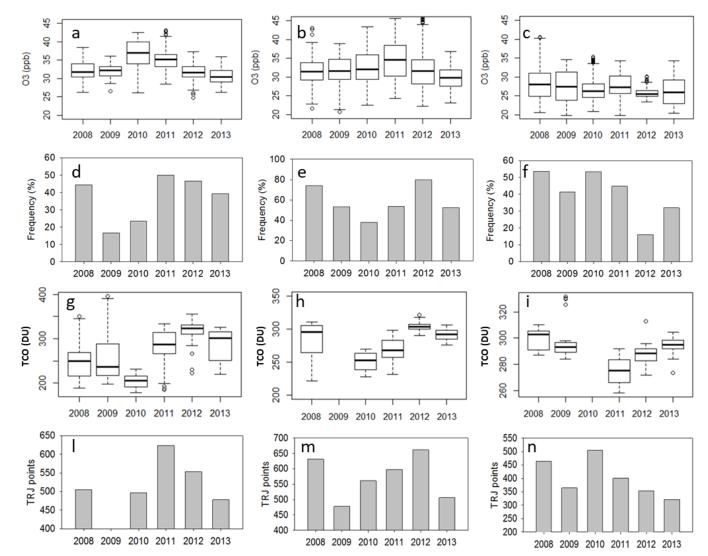




Ozone Enhancement Events (OEEs)

OEEs **selection** based on the following procedure:

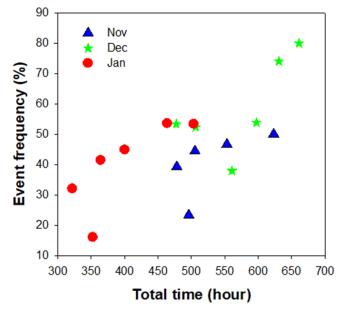
- Calculate the «undisturbed» O₃ annual cycle (sinusoidal fit)
- Calculate the PDF of the deviations of daily data from the sinusoidal fit, plus the application of a Gaussian fit to the PDF
- Compute a Gaussian fit for the PDF points beyond 1σ of the Gaussian PDF, and the intersection between the two curves is the selected threshold value for identifying OEEs (i.e., 6 ppb)

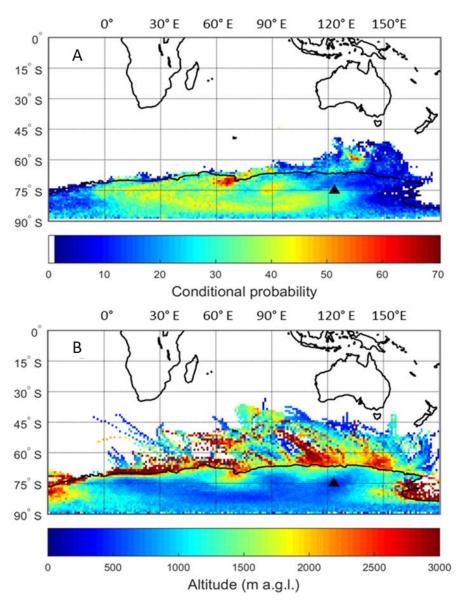

246 days (11.6% of the dataset) were selected as affected by anomalous OEEs: 25.7% in Nov., 39.3% in Dec., 27.7% in Jan. and 5.1% in Feb.

Average occurrence of the anomalous events peaking in December

Possible influence of total column of ozone

- No clear anti-correlation between TCO and O₃ values during OEEs
- Positive significant correlation between OEEs and TCO observed in November
- This supports the finding by Frey et al. (2009) that the flux of NO_X in the surface atmospheric layer (and thus O₃ production) only depends on second order from TCO variability

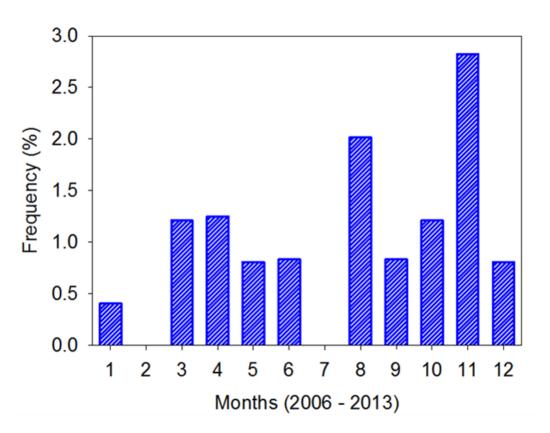




Role of synoptic-scale air mass transport

- 5-days LAGRANTO back-trajectories at Dome C
- Application of the potential source contribution function (PSCF)
- Connection between OEEs and the air masses which traveled over the East Antarctic plateau
- The **permanence of air masses** over the continental plateau is an important driver for the occurrence of OEEs at DMC, through accumulation

processes



Role of «deep» stratospheric transport

- Application of the STEFLUX tool
- (Putero et al., 2016) over a target region around Dome C for investigating deep stratosphere-to-troposphere transport (STT) events
- Despite no clear seasonal cycle is visible, the occurrence of STT events is lower than 2% on a monthly basis
- STT can represent a **source of nitrates** for the Antarctic atmosphere through different processes

STT can be an input of nitrates, which can be recycled by the snowpack and released as NO_X under sunlight conditions, thus possibly favoring OEEs

Upcoming work: the STEAR project

STEAR – Stratosphere-to-Troposphere Exchange in the Antarctic Region 2020–2022, funded by the Italian Antarctic Research Program (PNRA)

- Provide an assessment of stratosphere-to-troposphere exchange (STE) events in Antarctica, by using both observations and modeling outputs
- Continuous measurements of ⁷Be at Dome C, for the whole project duration
- Investigation of the **STE impact** on near-surface ozone, total ozone, aerosol chemistry, and nitrate in surface snow
- Analysis of simultaneous atmospheric composition datasets from Antarctic coastal observatories (i.e., Mario Zucchelli and Jang Bogo stations)
- **Modeling analyses** performed on different time scales, by using Lagrangian models (i.e., FLEXPART, HYSPLIT, and STEFLUX)

