Introduction

AMUSE is a recent research project, funded by the DFG (German Research Council) and performed in close cooperation of TUB, GFZ and DWD during 2019-2022. AMUSE is aiming at developments of advanced ultra-rapid multi-GNSS products with a goal of improving the weather forecasts (especially severe events) in Germany in cooperation with the German Weather Service DWD.

The main innovations are: 1) developments to provide multi-GNSS instead of GPS-only data, including GLONASS, Galileo and BeiDou; 2) developments to provide high quality slant observations, containing water vapor information along the line-of-sight from the respective ground stations; 3) developments to shorten the delay between measurements and the provision of the products to the meteorological services.

The project consists of three working packages (WP). In WP1, the multi-GNSS ultra rapid tropospheric products will be calculated using an in-house developed software EPOS. The GNSS-derived tropospheric products, such as Zenith Total Delays (ZTDs) and Integrated Water Vapor (IWV), will be delivered with a delay shorter than 15 minutes after each hour (ultra-rapid processing). Additionally, GFZ will provide Slant Total Delays (STDS) with a time resolution of 2.5 minutes. In WP2, for monitoring purposes, the GNSS estimates will be compared against external reference data in three categories: space-based techniques (e.g. VLBI/InSAR), conventional meteorological sensors (e.g. water vapor radiometer (WVR), radiometer) and numerical weather models (NWM). The project work at TUB and GFZ will be complemented in WP3 by a contribution of DWD to investigate in detail and to quantify the forecast improvement, which can be reached by using the new generation GNSS meteorology data.

WP1: Ultra-rapid multi-GNSS products

Currently, over 100 satellites are in orbit and transmitting data contributing to the multi-GNSS constellation. Courtesy: B. Männel (GFZ).

German SAPOS network consists currently of around 270 stations. Almost all of the stations are at least two-systems capable and half of them are four-systems capable as of March 2020. Courtesy: M. Bräcke (GFZ).

WP2: Multi-technique validation

Comparison of GPS and NWM STDS for one summer month (June 2019) and one winter month (December 2018). The NWM STDS are ray-traced through the atmospheric reanalysis model ERA5. Top: the differences between the observations and the model. The black line indicates the mean bias and the red line indicates the standard deviation. The differences are much larger for higher elevation angles. Bottom: the relative differences. The differences are always below 0.5%. There is no longer a dependence between the elevation angles and the differences.

WP3: Data assimilation into NWM

The results of precipitation forecast in Germany on 28 May 2014 (strong precipitation event) with high-resolution COSMO-DE model. Green: hits, red: false alarms, black: misses. The validation with the radar data proves that the assimilation of GNSS data improves the hit rate by 18% compared to the reference experiment.

Assimilation experiment in May/June 2016 using COSMO-DE model. The GNSS assimilation improves the forecasts by 1-4%. Adding the STDS to ZTDs improves the forecasts by 1-2%.

References

Kahlbäck et al. (2017). Inter-technique validation of tropospheric delay from GPS and SAPOS. JGR Atmospheres 122: 4267-4287.

Le et al. (2019). Real-time retrieval of precipitable water vapor from GPS and SAPOS observations. JGR Atmospheres. 124: 4267-4287.

Acknowledgements

We thank SAPOS, for providing the GNSS data, Markus Breßke and Benjamin Oberdorfer for providing the WP1 figures.

Karina Wilgan1,2, Jens Wickert1,2, Galina Dick3, Florian Zus2, Torsten Schmidt2, Michael Bender1, Roland Potthast3

1 TUB Technische Universität Berlin, Germany, 2 GFZ German Research Centre for Geosciences, Potsdam, Germany, 3 DWD Deutscher Wetterdienst, Germany

AMUSE

AMUSE working package flowchart

Severe Weather Monitoring and Forecasting

Overview

2020 the overview that Multi indicates quality ray DWD NWM from GNSS the two contributing GNSS constellation (the sensors weather multi reached (WP) improves The as summer are reanalysis (e summer validation GLONASS observations, in information Slant Delay NWM and can as longer (et (GLONASS, the monitoring Top against (STDs) be line using in (WVR), than observations event a Validation the innovations using (June mean GPS the currently 270 Universität Berlin, to angles J GPS vapor the and model Germany standard data working The Green model results In the minutes in GFZ GNSS assimilation SAPOS Bottom categories 1 the TUB, capable over 2020 (and atmospheric DFG GFZ a of retrieving by water (December the Water from ZTDs (ZTDs) GNSS the May/June WP multi the satellites will an multi in precipitation forecasts is added and atmosphere deviations three cooperation rapid radiosondes) 18 forecast along Gradients of in 2019 capable around Assimilation one the of the ‘ultra numerical delay below month al and transmitting WP multi et NWM which elevation and deviation dependence half the monthly radarometer (IWV) house stations The DWD AMUSE four all developments - DE RX3: 3 systems GRE (#3) RX3: 3 systems GRC (#1) RX4: 4 systems GREC (#126) developments - Männel based reference experiment 2 1,2 1,2 RX3: 3 systems GRE (#3) RX3: 3 systems GRC (#1) RX4: 4 systems GREC (#126) developments - Männel based reference experiment 2 1,2