

Vertical profiles of wind gust statistics

from a regional reanalysis using multivariate extreme value theory

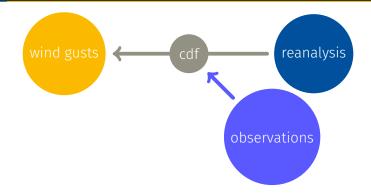
Julian Steinheuer and Petra Friederichs

May 8, 2020

Institute for Geophysics and Meteorology, University of Cologne & Institute of Geosciences, Bonn University

Julian.Steinheuer@uni-koeln.de

Motivation



(from www.sun-stadtwerke.de/projekte/windpark-wolfhagen)

Create a stochastic model for wind gusts in different heights as a function of weather model predictions!

Method

Overview

Article:

J. Steinheuer and P. Friederichs (2020). "Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory". In: *Nonlinear Processes in Geophysics* 27.2, pp. 239–252. DOI: 10.5194/npg-27-239-2020

Data

Wind gusts from the Hamburg Weather Mast (Brümmer et al. 2012)

- in 5 levels (10m, 50m, 110m, 175m, 250m)
- for every 5 min from 2004 to 2014 \Rightarrow hourly gust maxima of 3 s duration

Hourly **COSMO-REA6** regional reanalysis data (Bollmeyer et al. 2014)

• in 40 levels and mast surrounding 25 columns

right: Hamburg Weather Mast (from wettermast. uni-hamburg.de)

left: Domain COSMO-REA6 (CORDEX EUR-11) (from Bollmeyer et al. 2014).

Model: layer-wise EVT

Members of generalized extreme value (GEV) family have cdf

$$G(y; \mu, \sigma, \xi) = \begin{cases} \exp\left(-\left[1+\xi\left(\frac{y-\mu}{\sigma}\right)\right]_{+}^{-1/\xi}\right) & \xi \neq 0\\ \exp\left(-\left[-\exp\left(\frac{y-\mu}{\sigma}\right)\right]_{+}\right) & \xi = 0, \end{cases}$$

with location $\mu \in (-\infty, \infty)$, scale $\sigma \in [0, \infty]$, shape $\xi \in (-\infty, \infty)$.

• We assume $P(gust_z \leq y) \approx G(y; \mu, \sigma, \xi)$ with

$$\mu = \mu_0 + \mu_1 C_1 + \mu_2 C_2 + \mu_3 C_3 + \dots$$

$$\sigma = \exp(\sigma_0 + \sigma_1 C_1 + \sigma_2 C_2 + \sigma_3 C_3 + \dots)$$

$$\xi = \xi_0$$

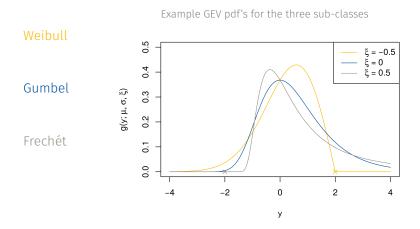
- Covariates C_i(t) from COSMO-REA6 and identical in every height.
- Censored Maximum Likelihood Estimation (with LASSO) in a cross-validation method on the years \mapsto 11 sets of estimates

Model: vertical Legendre model

• Use Legendre polynomials for vertical parameter modeling:

$$P_0(z) = 1$$
, $P_1(z) = z$, $P_2(z) = \frac{1}{2}(3z^2 - 1)$ for $z \in [0, 1]$.

• for z(10 m) = 0 and z(250 m) = 1:


$$\mu(z,t) = \mu_{00}P_0(z) + \mu_{01}P_1(z) + \mu_{02}P_2(z) + [\mu_{10}P_0(z) + \mu_{11}P_1(z) + \mu_{12}P_2(z)]C_1(t) + \dots,$$

$$\sigma(z, t) = \exp(\sigma_{00}P_0(z) + \sigma_{01}P_1(z) + \sigma_{02}P_2(z) + [\sigma_{10}P_0(z) + \sigma_{11}P_1(z) + \sigma_{12}P_2(z)]C_1(t) + \dots).$$

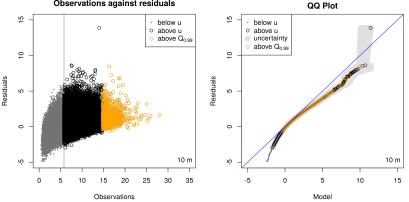
 \rightarrow enables prediction between layers (leave-layer-out model to test ability)

• and fix $\xi(z,t) = 0$ (Gumbel distribution).

Restriction on Gumbel distribution

Advantage: no restriction in domain of definition

- \rightarrow no upper endpoint (e.g. no highest gust)
- ightarrow stable optimization routines

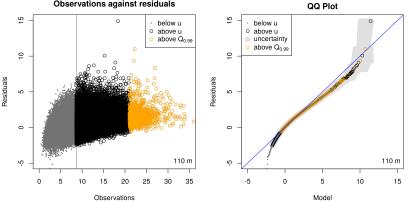

Results

LASSO selection

LASSO selection (×) in	LP1 ~	LP1 \sim const.		LP2 \sim lin.		LP3 \sim quad.	
Model covariates (light blue) for						σ	
Wind gust diagnostic in 10 m (VMAX_10M)	×	×					
Temporal variance (±2 h) of VMAX_10M		×		×			
Barotropic mode of horizontal wind in mast layers	×		×				
Baroclinic mode of horizontal wind in mast layers		×	×				
Mean horizontal wind in 700 hPa	×	×	×				
SD of horizontal wind in 700 hPa							
Mean vertical wind in 700 hPa							
SD of vertical wind in 700 hPa		×					
Pressure tendency	×	×					
Lifted index		×					
Water content grid column	×						
SD of CAPE							
Diff abs. horizontal wind in 6 km and 1 km							
Temperature in 2 m							
Annual cycle		×					

Residuals in 10 m

Observations against residuals



Legendre model diagnostics: censoring threshold $u = 5.79 \text{ ms}^{-1}$ for MLE at 50 % quantile

- the one residual outlier correspond to no reanalysis signal and is an outlier in observation data
- high gusts are slightly overestimated, but overall they fit well

Residuals in 110 m

Observations against residuals

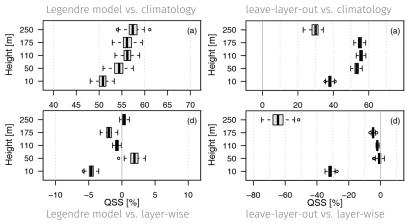
Legendre model diagnostics: censoring threshold $u = 8.65 \text{ ms}^{-1}$ for MLE at 50 % quantile

- similar pattern as for 10 m
 - \rightarrow good vertical agreement

Verification

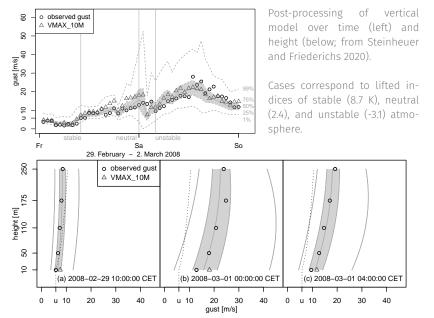
- use proper scoring rules to validate a prediction against observation y
- CRPS, Brier Score, or Quantile Score (QS) for probabilistic prediction *G*
- \cdot QS can verify the prediction quality in high quantiles

$$QS_{\tau} = \rho_{\tau}(y - G^{-1}(\tau)).$$
 (1)


for $\tau \in [0, 1]$ and Check Loss Function:

$$\rho_{\tau}(x) = \begin{cases} x\tau & \text{if } x \ge 0, \\ x(\tau - 1) & \text{if } x < 0. \end{cases}$$
(2)

Skill Score =
$$1 - \frac{\text{Score}}{\text{Score}_{\text{Ref}}}$$
 (3)

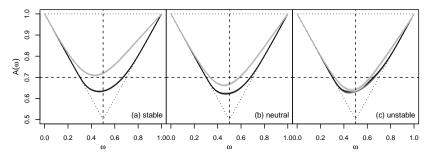

Verification: Quantile skill score

 $\tau = 99\%$ quantile (from Steinheuer and Friederichs 2020)

- ightarrow improvements up to 60 %
- \rightarrow Legendre model similar to layer-wise model
- ightarrow prediction of intermediate gust layers reasonable

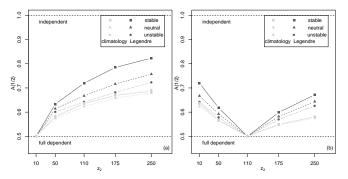
Example: Storm Emma

12


Dependency

Dependency function

• Non-parametric Pickands dependency function in the bivariate case (Pickands 1981)


$$A(\omega) = n \left[\sum_{i=1}^{n} \min(\frac{x_i}{\omega}, \frac{y_i}{1-\omega}) \right]^{-1} \text{ for } \omega = \frac{y}{x+y} \text{ with } X, Y \sim F \text{ Frechét}$$

• Distinguish between stable, neutral, and unstable situations Legendre vertical model (light grey) and climatology (dark grey) with cases (a) 53 % LI \geq 6, (b) 36 % 6 > LI \geq -2, and (c) 11 % -2 > LI for $\omega = \frac{F_{110}m}{F_{10}m+F_{110}m}$ (from Steinheuer and Friederichs 2020).

Dependency function

Dependency at $\omega = 1/2$ between gusts (grey) and model residuals (black) at all layers and (a) $z_1 = 10 m$, and (b) $z_1 = 110 m$ (from Steinheuer and Friederichs 2020).

- ightarrow new model reduces vertical dependencies between the layers
- $\rightarrow\,$ dependency structure between gust layers does not follow a simple distance relation

- \rightarrow Post-processing for the prediction of wind gusts in the vertical based on regional reanalysis COSMO-REA6
- $\rightarrow\,$ some outlier in the residuals exists, but the high gusts are captured well by the model
- → gusts in an interior layer can be predicted without observations from that layer
- ightarrow gust dependencies between the layers can be reduced

Vertical profiles of wind gust statistics

from a regional reanalysis using multivariate extreme value theory

Julian Steinheuer and Petra Friederichs

May 8, 2020

Institute for Geophysics and Meteorology, University of Cologne & Institute of Geosciences, Bonn University

Julian.Steinheuer@uni-koeln.de

References

Bollmeyer, C. et al. (Dec. 2014). "Towards a high-resolution regional reanalysis for the European CORDEX domain". In: *Q. J. R. Meteorol. Soc.* 141.686, pp. 1–15. DOI: 10.1002/qj.2486.

Brümmer, Burghard, Ingo Lange, and Heike Konow (Aug. 2012). "Atmospheric boundary layer measurements at the 280 m high Hamburg weather mast 1995-2011: mean annual and diurnal cycles". In: *Meteorol. Z.* 21.4, pp. 319–335. DOI:

10.1127/0941-2948/2012/0338.

Pickands, James, III (1981). "Multivariate extreme value distributions". In: Bull. Inst. Internat. Statist 49, pp. 859–878, 894–902.

Steinheuer, J. and P. Friederichs (2020). "Vertical profiles of wind gust statistics from a regional reanalysis using multivariate extreme value theory". In: Nonlinear Processes in Geophysics 27.2, pp. 239–252. DOI: 10.5194/npg-27-239-2020.