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Abstract 

Soil organic carbon (SOC) losses under a changing climate are driven by the temperature sensitivity of 
SOC mineralization (usually expressed as Q10, the multiplier of activity with 10 °C temperature 
increase). The activation energy theory (AET) suggests that, due to higher activation energies, the 
more complex the carbon, the higher is mineralization Q10. However, studies on Q10 have been 
inconsistent with regard to AET. Measurements of potential soil enzymes activity Q10 even 
contradicted AET: Phenoloxidase (representing complex carbon) had consistently lower Q10 than the 
more labile xylanase and glucosidase. This study used two approaches of examining Q10 in SOC 
modeling: 1) Bayesian calibration (BC) and 2) using different measured enzyme Q10 as proxies for 
mineralization Q10 of different SOC pools. The SOC model was DAISY (S. Hansen et al., 2012). BC 
informed Q10 by field measured data, while the second approach tested if directly using enzyme Q10 

(of phenoloxidase, glucosidase and xylanase) for DAISY pools improved simulation results. Both 
approaches used the temperature sensitive measurements of CO2 evolution and soil microbial 
biomass. The measured enzyme Q10 were from field manipulation experiments with bare fallow and 
vegetated plots in the two regions of Kraichgau and Swabian Jura in Southwest Germany. The 
enzyme-derived Q10 were used for modelling those fields and furthermore for in-situ litterbag 
decomposition experiments at 20 sites in the same region. Two further laboratory experiments with 
temperature manipulation were included: an incubation of the field residues into soil and an 
incubation of bare soil from the start and year 50 of a long duration bare fallow (from Ultuna). The 
BC made use of CO2 and microbial data to inform about the range of Q10 of different carbon pools for 
the individual experiments and combined data.  

The BC of the residue incubation experiment constrained Q10 for metabolic (~3) and structural litter 
(~2). Estimated 95% credibility intervals did not overlap. The BC for Ultuna could constrain the slow 
and fast SOC pool with Q10 ~2.8 and ~3, respectively, but credibility intervals of both pools 
overlapped. The Q10 of field experiments, which had most abundant data, could not be constrained 
by BC, probably because their annual temparature variability was too low. However, the model 
errors of the field experiment could be reduced by the second approach, when the Q10 of 
phenoloxidase was used for to the structural litter pool as well as for the fast and slow SOC pools. 
Thus regional enzyme Q10 improved the model fit but only for regional simulations. Therefore, they 



could be useful proxies when natural temperature range is too small to inform temperature 
sensitivity by BC. Any trends found in this study contradicted AET, both from measured enzymes and 
BC of the incubation experiments. This calls for alternative Q10 hypotheses and the need for 
individual Q10 values for different SOC pool rather than a general one. BC approaches would benefit 
from a wider temperature range of field experiments and understanding what causes variable 
enzyme Q10 could help to improve future SOC models.  

 

 

 

Experiment overview: 

A number of field and laboratory incubation experiments were combined to test the hypotheses, a) 
whether pool specific Q10 in models should be used and b) whether measured enzyme Q10 would 
represent a proxy for pool specific Q10.  

Table 1 Soil characteristics of the manipulation experiments used in this study, according to IUSS Working Group WRB 2007.  

Study Site or origin 
of soil material/ 
Experiment no. 

UTM 
Degrees 
Latitude 

UTM 
Degrees 

Longitude 

Mean 
annual 

temperature 
(°C)/ 

precipitation 
(mm) 

Study type Soil type 
Clay 
(%) 

Silt 
(%) 

Initial 
SOC 
(%) 

Types of available 
measurements 

Kraichgau 1 /1+2 48.928517 8.702794 

9.4/890 

Field manipulation 
(fallow/ vegatated) 

Stagnic 
Luvisol 18 77 0.90 SOC, SMB-C, soil CO2 

Kraichgau 2 /1+2 48.927748 8.708884 Field manipulation 
(fallow/ vegatated) 

Stagnic 
Luvisol 

18 80 1.04 SOC, SMB-C, soil CO2 

Kraichgau 3 /1+2 48.927197 8.715891 
Field manipulation 
(fallow/ vegatated) 

Stagnic 
Luvisol 

17 81 0.89 SOC, SMB-C, soil CO2 

Swabian Jura 4 /1+2 48.527510 9.769429 

7.5/1040 

Field manipulation 
(fallow/ vegatated) 

Calcic 
Luvisol 

38 56 1.78 SOC, SMB-C, soil CO2 

Swabian Jura 5 /1+2 48.529857 9.773253 
Field manipulation 
(fallow/ vegatated) Anthrosol 29 68 1.95 SOC, SMB-C, soil CO2 

Swabian Jura 6 /1+2 48.547035 9.773176 Field manipulation 
(fallow/ vegatated) 

Rendzic 
Leptosol 

45 51 1.91 SOC, SMB-C, soil CO2 

Kraichgau and 
Swabian Jura /3 

Experiment 3 adjacent to experiment 1 
and 2 fields 

Field litterbag 
incubation 

    litter C 

Crop-litter lab 
incubation /4 

48.739626 8.931971 NA 
Lab incubation of crop 

residues in bulk soil 
Haplic 
Luvisol 

23 75 2.25 Soil CO2 

Ultuna /5 59.821879 17.656348 NA 
Lab incubation of bulk 

soil 
Eutric 

Cambisol 37 41 1.50 soil C 

 

UTM = Universal Transverse Mercator reference system; A (Eshonkulov et al., 2019); B (Menichetti et al., 2013)  



Initial simulations with the standard Q10 of 2 from Daisy: 

Experiment 1- bare soil  

1.1 SMB-C     1.2 CO2 C  

 

Experiment 2 - vegetation plots 

2.1 SMB-C     2.2 CO2 C  

 

Figure 1 Simulations of SMB-C (left) and CO2 (right) for experiment 1 (top) and experiment 2 (bottom) with the 0 hypothesis 
(all Q10 equal 2). 

  



Experiment 3  - regional litterbag incubation:  

 

 

Figure 2 Simulations of remaining C in litterbags of experiment 3 with the 0 hypothesis (all Q10 equal 2). 

  



Experiment 4 - crop-litter incubation 

 

Figure 3 Simulations of experiment 4. Displayed are cumulative CO2 evolution (top-left), rate of CO2 evolution (top-right), 
with the 0 hypothesis (all Q10 equal 2). 

 

Experiment 5 - Ultuna fallow soil incubation  

 

Figure 4 Simulations of remaining C of experiment 5 with the 0 hypothesis (all Q10 equal 2). 

  



Bayesian calibration inferred Q10: 

In order to test pool specific Q10, a clear definition of pools in the Daisy model was necessary. 
Division of pools was done as follows: litter by the  lignin to nitrogen (L/N) ratio (Parton et al., 1987), 
and SOM by the ratio of aliphatic/aromatic-carboxylate carbon (Laub et al., 2020). 

 

 

Figure 5 Structure of the adapted Daisy soil organic matter model, as used in this study. The partitioning of litter into 
structural and metabolic is controlled by the lignin to nitrogen (L/N) ratio, kSOM, kSMB and kAOM are turnover rates of the 
pools and fSOM_slow is the amount of recalcitrant materials from soil microorganisms Measured enzyme Q10 of 
phenoloxidase and ß-glucosidase were applied as pool specific Q10, compared to a standard Q10 of 2 for all pools. 

Next to Bayesian calibration, field measured enzyme Q10 were applied as pools specific Q10. They 
were measured in experiment 1 (Ali et al., 2015).  

 

 

Figure 6 Distribution densities of measured β-glucosidase, xylanase and phenol/peroxidase Q10, from experiment 1 and 2, 
that matched the quality criteria of a modelling efficiency >0.7 and were used in this study. The Median values were applied 
as pool specific Q10. Those were a Q10 of 1.35 for phenoloxidase and 1.82 for β-glucosidase. Xylanase, with a Q10 of 1.98 was 
to close to the standard of 2 and not tested separately. 

 

 

  



Table 2 Performance statistics of the hypothesis 0 model, using a standard Q10 for all pools. The performance of simulated 
compared to measured values within the different experiments were assessed. Used were measurements of soil microbial 
biomass C (SMB-C), CO2 evolution from the soil remaining C in litterbags and remaining C of incubated soil Squared bias (SB), 
nonunity slope (NU) and lack of correlation (LC) are displayed as their percentage of the mean squared deviation. The 
properties of each experiment are explained in detail in Table 1. 

Experiment Property Unit RMSD R2 SB (%) NU (%) LC (%) 

1 SMB-C kg C ha-1 282.9 0.67 22.6 10.5 67 

1 CO2 evolution kg CO2 C ha-1 hr-1 2.48 0.10 70.4 27.3 2.3 

2 SMB-C kg C ha-1 363.4 0.45 1.8 19.3 78.9 

2 CO2 evolution kg CO2 C ha-1 hr-1 18.57 0.07 74.5 25.3 0.2 

3 C in litterbag g C per bag 0.186 0.72 2.9 11.8 85.3 

        
4 CO2 evolution kg CO2 C ha-1 hr-1 39.9 0.61 6.8 3.6 89.6 

5 C remaining kg C ha-1 213.9 0.99 51 16.8 32.1 

 

Performance statistics indicated that some simulations were biased with standard parameters, 
therefore, Bayesian calibration let the parameters vary at the same time as Q10 values, to account for 
potential experiment bias due to unsuitable parameter values. Experiment 1 to 3 were combined in 
Bayesian calibration, as they were in the same region. 

 

 

Figure 7 The Q10 values of different SOM pools which were assigned by the three individual Bayesian calibrations when all 
other Daisy parameters were allowed to vary at the same time (a = combining agricultural bare fallow plots, vegetation 
plots and a litterbag experiment , all in the field, Exp. 1,2 and 3; b = incubating crop-litter at different temperatures in the 
laboratory, Exp. 4; c = incubation of long term fallow soil from Ultuna using soil of year 0 and 54, Exp. 5). 

Bayesian calibration could only constrain laboratory incubation experiments, but not the field 
experiment. Some of the inferred Q10 values were significantly higher than the Daisy standard of 2. 

c) Bare soil incubation 
(experiment 5) 

b) Crop-litter incubation 
(experiment 4) 

 

a) Kraichgau and Swabian 
Jura (experiment 1,2,3) 

 



Table 3 Improvement of simulations by using enzyme Q10 as pool specific Q10. Displayed are the root mean squared 
deviations (RMSD) as percentage of the RMSD of the 0 hypotheses (all Q10 being 2) for measurements of soil microbial 
biomass C (SMB-C), CO2 evolution from the soil, remaining C in litterbags and remaining C of incubated fallow soil. 
Additionally, the numbers in parentheses represent the Akaike information criterion (AIC).  

Experiment 

     Hypothesis  
 
 
Property 

 

Standard 
0 hypothesis, 

all Q10 = 2 

 Using 
enzyme Q10 

as pool 
specific Q10 

1 SMB-C 100 (1485)  90 (1466) 

1 CO2 evolution 100 (1784)  91 (1715) 

2 SMB-C 100 (909)  96 (908) 

2 CO2 evolution 100 (3196)  93 (3139) 

3 C in litterbag 100 (-60)  97 (-63) 

  
     

4 CO2 evolution 100 (1329)  109 (1357) 

5 C remaining 100 (518)  111 (530) 

 

Applying measured enzyme Q10 as pool specific Q10 reduced RMSD and AIC for the field experiments, 
but not for the laboratory incubation experiments. The results suggest, that Q10 are not fix, and 
should be represented as pool specific Q10. Varying optimal Q10 between experiments for the same 
defined pool, as inferred by Bayesian calibration, suggested that Q10 is not mainly an intrinsic 
substrate property. Instead, it seems to strongly depend on experimental conditions. In this context, 
measured enzyme Q10 could serve as a proxy for regionally different pool specific Q10 values. 
However, as enzyme Q10 is expensive to measure, the driving factors behind differences in pool 
specific Q10 need to be better understood. 
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