Antarctic ice-sheet hysteresis in a three-dimensional hybrid ice-sheet model

Marisa Montoya, Jorge Alvarez-Solas, Alexander Robinson, Javier Blasco, Ilaria Tabone, Daniel Moreno

Paleoclimate and Modelling Analysis (PalMA)

Dpto. Física de la Tierra y Astrofísica

Universidad Complutense de Madrid (UCM)

Instituto de Geociencias (CSIC-UCM)

Experimental setup

The hybrid ice-sheet--shelf model Yelmo (Robinson et al., 2020) is forced towards an equilibrated present-day Antarctic ice-sheet (AIS) state (100 kyr).

Climate forcing: RACMO2.3 simulation driven by ERA-INTERIM, averaged over 1981-2010 (van Wessem et al., 2018)

Basin-average basal melting after Rignot et al (2013).

Uncertainty with respect to basal friction is explored. A plastic law is used:

$$au_{\mathbf{b}} = -c_b rac{\mathbf{u_b}}{u_b}$$
 $c_b = c_f \lambda_b N_{\mathrm{eff}}$ $\lambda_b = egin{cases} 1 & ext{if } z_b \geq z_1 \ \exp\left(rac{z_b - z_1}{z_1 - z_0}
ight) & ext{if } z_b < z_1 \end{cases}$

72-member ensemble for different friction parameters:

$$c_f = 0.1, 0.2$$

 $z_0 = -50, -100, -250 \text{ m}$
 $z_1 = 0, 50, 100, 250 \text{ m}$
 $E_{shr} = 1, 2, 3 \text{ (enhancement factor for shear flow)}$

Then \rightarrow transient temperature forcing to investigate hysteresis of AIS volume with respect to temperature.

Present-day for selected control-run ensemble (within +/- 3m of observed SLE) after 100 kyr | RMSE for H and U

Best case against observations

Shaded: best case H_{model} -H_{obs} (m) Contours: surface elevation (every 500 m)

Best case modeled vs observed surface speed

Best case against observations

Shaded: surface ice speed

Contours: surface elevation (every 500 m)

Ice volume hysteresis

Transient quasi-static, uniform temperature forcing applied, starting from present-day (rhs) and zero-ice, isostatically-rebounded (lhs) initial conditions.

Dark grey: selected ensemble.

Red, blue lines: best cases for increasing and decreasing temperature forcing, respectively.

Hysteresis width reduced in steady-state control runs with constant forcing starting from present (red dots) and zero-ice initial conditions (blue dots).

Reason for jump at $\Delta T = 0$: basal melting reduces to zero in many basins

Conclusions

The AIS volume shows hysteresis with respect to temperature forcing. Steady-state runs suggests slightly smaller width of hysteresis - possibly linked to forcing rate in transient runs.

The temperature threshold for WAIS collapse is much lower than previously thought (regional warming of 0.5-1.05 K) but could depend on oceanic forcing parameters (e.g., here the heat exchange coefficient is 10 m a⁻¹ K⁻¹).

Regional warming of 6-11 K leads to accelerated AIS mass loss.

AIS ice volume and distribution do not recover to present-day values after forcing reversal.