Statistical magnetospheric location of auroral omega bands obtained by empirical magnetic field models

Varvara Andreeva, Sergey Apatenkov, Evgeny Gordeev (SPBU, St. Petersburg, Russia), Noora Partamies (UNIS, Longyearbyen, Norway), and Kirsti Kauristie (FMI, Helsinki, Finland)

- Omega bands are curved aurora forms, appearing as rows of inverted Greek letter Ω drifting eastward
- Their magnetospheric signatures and sources are poorly understood due to a small number of conjugated spacecraft observations
- The goal of the study is to find a characteristic magnetospheric magnetic field configuration corresponding to this type of aurora on the basis of an empirical model and the list of omega bands observed in the Fennoscandian Lapland
Data

- The list of omega bands observed in the Fennoscandian Lapland in the period 1997-2007 (Partamies et al., 2017)

- Corresponding MIRACLE all-sky camera observations

- ASC stations coordinates in MAG system (calculated for 2007):

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Name</th>
<th>MLat,°</th>
<th>Long,°</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABK</td>
<td>Abisko</td>
<td>66.1</td>
<td>114.6</td>
</tr>
<tr>
<td>KEV</td>
<td>Kevo</td>
<td>66.1</td>
<td>122.6</td>
</tr>
<tr>
<td>KIL</td>
<td>Kilpisjärvi</td>
<td>66.4</td>
<td>117.0</td>
</tr>
<tr>
<td>MUO</td>
<td>Muonio</td>
<td>65.0</td>
<td>118.1</td>
</tr>
<tr>
<td>SOD</td>
<td>Sodankylä</td>
<td>64.0</td>
<td>119.8</td>
</tr>
</tbody>
</table>
Data

• Magnetic field line tracing: IGRF-12 and the empirical model TA16 (*Tsyganenko*&*Andreeva*, 2016)

• TA16 input parameters: : Pdyn, Sym-H, N index (*Newell et al.*, 2007), IMF By

• Footpoints for magnetic field line tracing:

(left) ASC image of Ω-structure, Sodankylä, 20.03.2003; (right) its projection in GEO coordinates at 110 km
Mapping results

- 244 events from the original list
- (A) Ω-projections in GSM equatorial plane
- (B)&(C): occurrence vs MLT and radial distance (Re)
- 90% of events are within 2-4 MLT and R~6.0-13.5 Re
- Maximum at R=8 Re
- Results are in agreement with previously reported case-studies
Magnetospheric magnetic field configuration

Superposed $B(R)$ [left] and $|dB/dR|(R)$ [right] profiles in the vicinity ±5 Re of omega-band projection. Zero-epoch $dR=0$ corresponds to the omega projection.
Magnetospheric magnetic field configuration

- Isotropic boundary algorithm (IBA) method to evaluate the magnetic field configuration in the tail (Sergeev et al., 1993)

- Isotropic boundary: \(R_C / \rho = 8 \)

 \(R_C \) – the curvature radius of the field line,
 \(\rho \) – the particle gyroradius

- In the vicinity of omega-band possible source:
 a chaotic motion of 30-keV energetic protons and adiabatic motion of 100-keV electrons

- \(\Rightarrow \) stretched magnetic field lines, but the tail current sheet is rather thick
Summary

• The first statistical study of the omega-bands projections using the large set of the MIRACLE ASC observations and new empirical magnetic field model TA16

• It is demonstrated that 90% of the omega bands map to between 6-13.5 Re (occurrence max at ~8 Re) => region, where rapid flows stop (occurrence rate of RFTs drop at radial distances 10-15 Re) (Schödel et al., 2001)

• Superposed radial profiles of the magnetic field and radial gradient in the tail are calculated => a magnetospheric source of Ω is located in the transition region between the tail-like and dipolar fields

• In this region: a chaotic motion of 30-keV energetic protons and adiabatic motion of 100-keV energetic electrons
References

