Investigation of strongly enhanced methane Part II: Slow climate feedbacks

Laura Stecher, Franziska Winterstein, Martin Dameris, Patrick Jöckel, and Michael Ponater

DLR Oberpfaffenhofen, Institute for Atmospheric Physics

EGU General Assembly 2020

Middle atmosphere composition and feedbacks in a changing climate

Objective: Quantifying the effects of slow SST-driven climate feedbacks in CH₄-driven climate change simulations

Simulation	Lower boundary of CH ₄	SST and SIC		MESSy Version
REF fSST	1.8 ppm (reference 2010)	prescribed	Rapid adjustments	2.52
S2 fSST	2×REF fSST → 3.6 ppm ¹	(Rayner et al., 2003)		
S5 fSST	5×REF fSST → 9.0 ppm			
REF MLO	1.8 ppm (reference 2010)	Mixed Layer Ocean	Slow climate feedbacks	2.54.0
S2 MLO	2×REF MLO → 3.6 ppm ¹	(MLO) MESSy submodel		
S5 MLO	5×REF MLO → 9.0 ppm	MLOCEAN ²		

- Chemistry-climate model EMAC (Jöckel et al. 2016) in T42L90MA resolution
- CH₄ lower boundary mixing ratios nudged by Newtonian relaxation³
- Compare results including MLO with respective experiments with prescribed sea surface temperatures and sea ice concentrations (fSST; Winterstein et al. 2019) to separate the effects of rapid adjustments and slow climate feedbacks
- Look out for Investigation of strongly enhanced methane Part I: Chemical feedbacks and rapid adjustments in the fSST simulations in this session

CH₄-induced temperature response in MLO experiments

	ΔT _{2m} [K]
S2 MLO	0.42 ± 0.03
S5 MLO	1.28 ± 0.02

Tropospheric oxidation capacity

Difference of OH response in MLO w.r.t. fSST

Weaker reduction of OH in the troposphere in the MLO simulations leads to an offset of the prolongation of tropospheric mean CH₄ lifetime.

Strengthening of Brewer-Dobson Circulation in simulations with tropospheric warming

Residual mean streamfunction

→ More pronounced strengthening in S5 MLO compared to S5 fSST The respective Plots for 2× CH₄ are shown in the Supplementary Information at the end of the presentation.

CH₄ and O₃: additional indicators of strengthened tropical upwelling

Difference between
S5 MLO and 5 × REF MLO

→ hightlights where S5 MLO

deviates from 5 × increase

S5 MLO - 5xREF MLO CH₄ Annual clim. 0.1 60 50 40 10 -30 50 200 10 500 1000 60° S 30° S 30° N 60° N -3 -12 -9 -6

Increase of CH₄ and decrease of O₃ indicate enhanced transport of tropospheric airmasses into the stratosphere

Difference of O₃ response in S5 MLO w.r.t. S5 fSST

Water vapor response in S5 MLO w.r.t. S5 fSST

Corresponding Radiative Impact of H₂O in W m⁻²:

	Trop. H₂O MLO	Trop. H ₂ O fSST	Strat. H ₂ 0 MLO	Strat. H ₂ O fSST
S2	0.72 ± 0.06	0.08 ± 0.08	0.19 ± 0.01	0.15 ± 0.00
S5	2.23 ± 0.10	0.30 ± 0.09	0.65 ± 0.01	0.55 ± 0.01

Stratospheric adjusted temperatures: induced by response of individual radiatively active gases

Dynamically induced temperature response

-1.8 -1.2 -0.6 0 0.6 1.2 1.8

-1.8 -1.2 -0.6 0 0.6 1.2 1.8

Summary and Conclusions

To quantify the effect of slow SST-driven climate feedbacks in CH_4 -forced climate change scenario calculations we compare the response in experiments with MLO to the response in the respective fSST experiments.

- ➤ Recuced prolongation of tropospheric mean CH₄ lifetime
- **➤ Circulation changes** in MLO experiments
- ➤ Weakened increase of CH₄ depletion in stratosphere
- ➢Increase of Radiative Impact induced by (tropospheric and stratospheric)
 H₂O by SST-driven climate feedbacks
- ➤ Stratospheric adjusted temperature changes from SST-driven climate feedbacks dominated by changes of **trop**. H₂O, SWV and strat. O₃
 - → Enhanced radiative cooling in lowermost stratosphere

Look out for Stecher et al. (2020) in ACP coming soon!

Thank you!

References

Jöckel et al. 2016: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geosci. Model. Dev.

Rayner et al. 2003: Global analyses of sea surface temperatures, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res. Atmos.

Winterstein et al. 2019: *Implication of strongly increased atmospheric methane concentrations for chemistry-climate connections*, Atmos. Chem. Phys.

Footnotes

¹RCP8.5 scenario projects a doubling of CH₄ mixing ratios of the year 2010 by the end of the century.

²MLOCEAN submodel, M. Kunze, https://www.messy-interface.org; original code by Roeckner et al. 1995: *Climatic response to anthropogenic sulfate forcing simulated with a general circulation model*, Aerosol Forcing of Climate

³CH₄ lower boundary of reference simulations are nudged to observational zonal mean estimate by AGAGE, (https://agage.mit.edu) and NOAA/ESRL (https://www.esrl.noaa.gov/); CH₄ lower boundary of S2 and S5 are nudged to the double and the fivefold of this reference, respectively

Supplementary Information

Residual mean streamfunction S2 fSST and S2 MLO

CH₄ response:

Difference between S2 MLO and 2 × REF / S5 MLO and 5 × REF MLO → hightlights where S2 MLO / S5 MLO deviate from 2 × / 5 × increase

Upper: O₃ response in MLO

Lower: Difference of O₃ response in MLO w.r.t. fSST

Upper: H₂O response in MLO

Lower: Difference of H₂O response in MLO w.r.t. fSST

Stratospheric adjusted temperature response S5 MLO

Dynamically induced temperature response S2 MLO: Annual clim., DJF and JJA

