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1. Background and Aims
• Surface and subsurface melting, and the ponding, drainage and movement of 

meltwater across ice shelves have all been identified as factors contributing to past 
ice shelf collapse.

• For example, the Larsen B Ice Shelf likely collapsed due to the chain reaction 
drainage of ~ 3000 melt ponds in < 6 weeks.

• Recent studies have identified pervasive meltwater systems (i.e. rivers, streams 
and lakes) across Antarctic ice shelves (Kingslake et al., 2017; Dell et al., 2020).

• In addition, Antarctic ice shelves are often covered by vast areas of slush and 
shallow water.

• Slush is a spectrally ambiguous class (Moussavi et al., 2020), and can often be 
confused with blue ice and re-frozen meltwater. Identifying slush using a simple band 
thresholding approach is therefore likely to lead to significant errors.

• Here we use machine learning in the form of a k-means clustering algorithm (Arthur 
and Vassilvitskii, 2007) to train a supervised classifier on Landsat 8 imagery 
(Halberstadt et al., 2020), to assess seasonal variations in the proportion of slush 
vs. deep water bodies on ice shelves from 2013 to present day. 

2. Scene Selection
• 14 image scenes across 7 ice shelves (Nivlisen, Roi Baudouin, Amery, Shackleton, 

Nansen, Bach, George VI), distributed across Antarctica were selected to train the 
unsupervised classifier (Fig.1). These ice shelves were selected as they are spatially 
distributed around the continent, and are characterised by a range of surface 
conditions.

• Image scene dates spanned the full Landsat 8 record (2013-2020), to account for 
temporal variations in surface conditions.

• Image scenes acquired at a range of solar angles > 20° were incorporated into the 
training data, following Halberstadt et al. (2020). 

• All scenes (see Section 2) were clipped using the rock and cloud thresholding 
methods from Moussavi et al. (2020).

• In Google Earth Engine (GEE) we then used an unsupervised clustering algorithm (k-
means) to identify clusters with statistically different spectral properties for bands 1-7 
in each image. 

• We then manually interpreted these clusters in order to identify our classes of 
interest: (i) slush and shallow water, (ii) deep water. 

• To accurately identify: (i) slush and shallow water, (ii) deep water, we have separated 
out and identified visually ambiguous classes such as: blue ice, cloud and rock 
shadow, re-frozen meltwater.

• Figure 2 provides an example of an output from the unsupervised k-means algorithm 
(Fig 2c), alongside an interpretation of the clusters to classify pixels as either (i) slush 
and shallow water or, (ii) deep water (Fig 2d).

3. Identifying Slush, Shallow Water and 
Deep Water
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Figure 1: Selected training sites for the unsupervised k-means clustering algorithm. The central map of Antarctica  is the Center-Filled LIMA Mosaic (Bindschadler et al., 2008). Dashed coloured boxes indicate the location of the surrounding Landsat-8 images 
for a) Nivlisen (166-110, 2019-02-19 (red)), (165-110, 2020-01-14, orange)), b) Roi Boudouin (154-110, 2017-01-24 (red)), (154-109, 2015-02-04, orange)), c) Amery (128-111, 2019-01-08 (red)), (127-110, 2019-01-17, orange)), d) Shackleton (113-106, 2020-
01-18 (red)), (112-106, 2020-02-28, orange)), e) Nansen (063-113, 2014-01-02, orange)), f) Bach (221-110, 2020-02-23 (blue)), (218-111, 2020-01-17, green)), g) George VI (218-110, 2020-01-17 (red)), (215-111, 2018-02-07, orange)).

4. Future Work
• Develop the k-means clusterer to identify: (i) slush and 

shallow water, (ii) deep water across all training sites. 
• Use the classes identified from the k-means clusterer to 

train a supervised classifier (e.g. Halberstadt et al., 
2020).

• Create a validation dataset to quantify classification 
error (e.g. Dirscherl et al., 2020; Halberstadt et al., 
2020; Moussavi et al., 2020). 

• Use validated supervised classifier to quantify areas of 
slush and shallow melt vs. deep surface melt across 
Antarctica from 2013 to present day. 
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Figure 2: Example products from the k-means clusterer over the Nivlisen Ice Shelf (Landsat 8 image, 166-110, 2016-12-27). a) Base image of the Nivlisen
Ice Shelf, the solid black line marks the ice shelf area, the red box shows the zoomed area featured in b,c, and d. b) True Colour composite, c) k-means
classes identified, d) interpreted deep water and shallow water/slush classes, extracted from the k-means clusters in Fig. 2c. 
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