Identification of Electron Diffusion Regions with an AI approach

Quentin Lenouvel

P. Garnier, V. Génot, S. Toledo-Redondo, B. Lavraud and MMS team

IRAP, Toulouse

May 2020, EGU
Purpose of the work: Automatic detection of Electron Diffusion Regions (EDR) and other plasma regions of interest with Machine Learning.

How: Training of a Neural Network on in situ MMS data from phase 1 to study and understand complex relationships between several physical parameters. Predictions of the algorithm on magnetopause crossings intervals (listed in the ISSI team’s magnetopause crossings database) from phase 1a.

Why: The identification of EDR events is hard (32 dayside reported events at the moment).

Find more EDR events => Better understanding of magnetic reconnection.
Earth’s plasma environment

- **Plasma regions**:
 - Solar wind
 - Bow shock
 - Magnetosheath
 - Magnetopause
 - Magnetosphere
 - Magnetotail

- **Magnetic Reconnection** is a major energy transfer process that can happen around the magnetopause and in the magnetotail.
Magnetic reconnection : MMS

- Magnetospheric Multiscale (MMS) mission launched by NASA in **March, 2015**
- **Study Magnetic Reconnection** near Earth’s magnetosphere
- Resolution of the instruments allowing for the first time the study of Electron Diffusion Regions
- Use of 4 identical spacecraft able to study:
 - **Electric and Magnetic fields**
 - **Particles** (electrons and ions)
- **Phase 1 orbit** : Mainly dayside magnetopause
Magnetic reconnection: Concept

- **Magnetic Reconnection**: Modification of the topology of magnetic field lines
 \[\Rightarrow \text{Conversion of magnetic energy into kinetic energy} \]

- **Recent physical concept** introduced first in the 50’s, first model from Sweet and Parker

- Ubiquitous in many other astrophysical context such as Solar Flares or certain models of Gamma Ray Bursts emissions, and it is also one of the main problems to achieve nuclear fusion
The **Electron Diffusion Region** is the heart of the magnetic reconnection process.

- **32 reported EDR encounters (dayside)**, listed in Webster et al. [2018]
- Reconnection scale larger than the diffusion region:
 - Ion Diffusion Region [**IDR**]: 50 to 500 km
 - Electron Diffusion Region [**EDR**]: 1 to 10 km (observable for the 1st time thanks to MMS)
- Presence of **crescents** (agyrotropy) in the **electron distribution functions** of EDRs (Hesse et al. [2014], Burch et al. [2016])
Identification of Electron Diffusion Regions using Machine Learning

Manual labeling for the Training dataset

Physical Parameters
Neural Network inputs

Quentin Lenouvel

Identification of Electron Diffusion Regions using Machine Learning
Neural Network for Supervised Learning

- **16 classical plasma parameters**:

 \[B_z \quad E_{||} \quad (E+v_x B) \quad V_e \quad j_{\text{fpi} \parallel} \quad j_{\text{fpi} \times B} \quad T_{e \parallel} \]

 \[|B| \quad E_{\perp} \quad (E+v_y B)_{\perp} \quad n_e \quad j_{\text{fpi} \perp} \quad J.E \quad T_e \]

- **+1 artificial parameter**: Mean(R/L)

Scalar measuring the **electron agyrotropy** (asymmetry) in the electron distribution functions

- **Architecture**: Use of a Feedforward **Multilayer Perceptron** (MLP)
Input physical parameters for the Neural Network

- **Mean(R/L)**: Scalar measuring the **asymmetry of the** electron distribution function =>
 \[
 \frac{\text{Average intensity of Right pixels}}{\text{Average intensity of Left pixels}}
 \]
 between [40 eV, 275 eV] after normalisation of each pixel by pixel ring intensity

- **Mean(R/L) values**
 generally **higher for the** EDR class than for the others
 => Very important parameter for the neural network!

- **Electron agyrotropic index** \sqrt{Q}
 (Swisdak et al. [2016]) found **inefficient**:
 worst results for the training and for the predictions with this parameter included
Training of the neural network

- **Manual labeling** on 32 events from Webster et al. (~80s burst data each), **to build our training dataset**, each of the 4 spacecraft is considered independently

- **Splitting of the data into 3 sets**:
 - **Training** (60% of each class): Data points that the algorithm will **learn** from
 - **Validation** (20% of each class): Data points used to **control** the training
 - **Testing** (20% of each class): Data points used to **evaluate** the performance of the algorithm

- **Training curves**: Show the accuracy and the learning curve for each epoch during the training (no overfitting here using early stopping technique!)

![Training Curves Diagram]
Evaluation of the performance of the algorithm

- **Evaluation of the algorithm with different metrics**:
 - Precision $= \frac{Tp}{Tp+Fp}$ ⇒ Low Precision = overestimation of the number of instances of the class
 - Recall $= \frac{Tp}{Tp+Fn}$ ⇒ Low recall = overlooking of a lot of instances of the class
 - F1-score $= \frac{2*(P*R)}{P+R}$ ⇒ Harmonic mean of Precision and Recall

<table>
<thead>
<tr>
<th>Class</th>
<th>Population</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDR</td>
<td>40</td>
<td>83%</td>
<td>95%</td>
<td>88%</td>
</tr>
<tr>
<td>IDR + Separatrix Region</td>
<td>1008</td>
<td>97%</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td>Magnetosphere</td>
<td>840</td>
<td>98%</td>
<td>100%</td>
<td>99%</td>
</tr>
<tr>
<td>Boundary Layer</td>
<td>2574</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Confusion Matrix</th>
<th>P. EDR</th>
<th>P. IDR</th>
<th>P. MSp</th>
<th>P. BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. EDR</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T. IDR</td>
<td>8</td>
<td>974</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>T. MSp</td>
<td>0</td>
<td>0</td>
<td>840</td>
<td>0</td>
</tr>
<tr>
<td>T. BL</td>
<td>0</td>
<td>29</td>
<td>6</td>
<td>2539</td>
</tr>
</tbody>
</table>

- The algorithm tends to **overestimate the number of EDR data points without missing many of them**
- High performance for the rest of plasma regions (F1-score > 95%) ⇒ Training shows **Promising results**
Flowchart of the whole process

- **Importance of post-processing**: Different configurations of criteria for **different approach**:
 - **Very restrictive parameters** => Reduced list of possible EDR candidates with **potentially a few false positives**
 - **Not too restrictive parameters** => Large list of possible EDR candidates with **potentially a lot of false positives**
 - Currently going for option number one
Example of potential new EDR candidate found (1)
Example of potential new EDR candidate found (2)
Identification of Electron Diffusion Regions using Machine Learning

Outer EDR candidates with $J.E < 0$ (1)
Outer EDR candidates with J.E < 0 (2)
Conclusion

- **Summary**:
 - **Training of a Machine Learning algorithm** on manually labeled data from the phase 1 of MMS. Predictions of the algorithm on **Magnetopause Crossings intervals** from phase 1a from ISSI team’s database.
 - **Use of a special parameter**: \(\text{Mean}(R/L) \) to better identify EDR crescents on time series.
 - **Good results** (F1-score > 95%) for the detection of plasma regions during the training, even though the number of EDRs seem to be overestimated by the algorithm.
 - Possibility to produce either a big list of possible EDR candidates with many false positives or a “clean” reduced one depending on the chosen post-processing parameters, but visual inspection still needed at this stage to check EDR candidates.
 - **Paper in preparation** with list of possible EDRs.
Thank you for reading!