Understanding catchment influences on

flood generating processes
Accounting for correlated attributes
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Figure 1: Contribution in percent for each flood generating process. Hydro-climatological input data for the
classification taken from the CAMELS catchment dataset (Addor et al, 2017). Flood events are defined as
peak-over-threshold with an average of 3 events per year.

Flood events driven by a mix of different processes
>Which catchment and climate attributes influence this mix?
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Several catchment attributes in the data are

highly correlated (Figure 2).

Accumulated local effects (Apley,
2016):

Interpretable machine learning
method

Not biased toward correlated
attributes

Applied to random forest model
Determines attribute influence on
model prediction
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Read more

Molnar, C., 2019. Interpretable machine learning - Accumulated
Local Effects (ALE) Plot. Lulu.com.
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Figure 2: Spearman correlation coefficient for 671 catchments in the CAMELS dataset. Black
lines indicate groups (Topology, Climate, Soils, Vegetation, Geology).
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Figure 3: 671 CAMELS catchments split into three different climate types.
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We check If attribute

Importance varies

between climates, by

dividing the catchments

Into three climate types

based on

- Aridity

- Fraction of precipitation
as snow.



- Climate attributes influence flood process

- For wet and dry catchments:

- In snow Influenced catchments also:

distribution most

* Fraction of precipitation as snow

* Aridity
* Mean precipitation
* Precipitation seasonality

* Elevation
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Summarised accumulated local affects
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Figure 4: The point colour shows the mean absolute values for each
accumulated local effects curve. Higher values indicate increased
importance. Point sizes represent cross-validation R2 prediction accuracy

for the random forest model.



- Which catchment attributes most influence flood generating processes varies
between climate types and processes

- So what? Looking at the impact of climate change on flooding requires us to
take the different processes and climate regions into account

Read more soon

Stein, L., Clark, M., Pianosi, F., Knoben, W. and Woods, R.,
Process oriented insights from interpretable machine learning -
what influences flood generating processes?. In preparation.
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