Stratigraphic and mineralogical characteristics of the Fishtie Cu-Co deposit, Zambia

Subaru Tsuruoka and Murray Hitzman

Irish Centre for Research in Applied Geosciences, School of Earth Sciences, University College Dublin, Belfield, Dublin, Ireland

> This talk is dedicated to the memory of James Mwale, First Quantum Minerals geologist largely responsible for the discovery of Fishtie

** European Union European Regional Development Fund

A Central African Copper Belt

 (\mathbf{i})

- ✓ World's premier Cu province with 14 giant deposits (>2Mt Cu) within a ~400km belt straddling DRC to Zambia.
- ✓ World resources: ~15% of copper and ~70% of cobalt.
- Characterized by higher Cu grade than average porphyry Cu deposits and contain other metals including Co, Zn, Pb, Ni, and Au.
- Deposits are hosted in the Neoproterozoic sedimentary rocks of the Katangan Supergroup, which was deposited at an intracontinental rift setting.
- ✓ The Fishtie Cu-Co deposit is located in an outlier, the Lusale basin, to the southeast of the Zambian Copperbelt.
- ✓ The deposit was discovered by First Quantum Minerals in 2004 and is currently estimated to contain 55Mt ore with1.04%Cu grade at a 0.5% cutoff grade.

A Fishtie Cu-Co deposit, Zambia

 (\mathbf{i})

60)

- At Fishtie, the Grand Conglomérat (Mwaele Fm.), which is interpreted as a Sturtian-age glacial diamictite, directly overlies basement schist and quartzite.
- Cu-Co sulfides are hosted in the Grand Conglomérat, overlying Kaponda Fm. siltstone, and particular facies of the Kakontwe Fm. dolostone.
- This study focuses on the eastern area of the deposit where a zone of high-grade Cu and Co mineralization is recognized and aims to refine the stratigraphic model by classifying different lithofacies of the Kakontwe Fm.
- ✓ This study is based on detailed logging of 42 exploratory drill holes totalling 8,300m and company drill hole data including core photos and company drill hole logs.

A Grand Conglomérat (Mwaele Fm.) at Fishtie

1. Diamictite

- ✓ Directly overlies the basement rocks at Fishtie
- Poorly sorted, sub-angular, polymictic, matrix-supported conglomerate; commonly clast-supported immediately above contact with basement
- Clasts are composed of quartzite, schist, granite, carbonate, mafic volcanic rocks

2. Siltstone

- ✓ Forms several horizons in the diamictite
- Common at the top of the Grand Conglomérat diamictite and grades into dolomitic siltstones of overlying Kaponda Fm.

<u> Kaponda Fm. Siltstone at Fishti</u>e

Bedded carbonaceous siltstone

- ✓ Gradually transitions from the uppermost siltstone of the Mwaele Fm. (Grand Conglomérat)
- ✓ Commonly carbonaceous
- ✓ Commonly well-mineralized
- Gradually transitions to the overlying silty dolostone of the lowermost Kakontwe Fm dolomite

Kakontwe Fm. dolostone at Fishtie

1. Bedded Silty Dolostone

- ✓ Centimeter scale bedding of siltstone and dolostone
- Gradually transitions from lower Kaponda Fm. siltstone and represents the lowermost level of Kakontwe Fm. dolostone
- ✓ Generally not mineralized

2. Massive Dolostone

- ✓ Generally present above Bedded Silty Dolostone
- $\checkmark~$ Millimeter scale banding of grey and white layers
- ✓ Some portions characterized by:
 - ✓ microbial texture
 - ✓ massive texture with rare anhydrite
- ✓ Commonly not mineralized

Kakontwe Fm. dolostone at Fishtie

3. Bedded Dolomitic Diltstone

- ✓ Limited distribution in the eastern area above Massive
 Dolostone and below Laminated Dolostone
- ✓ Commonly carbonaceous
- ✓ Well mineralized

4. Laminated Dolostone

- Commonly at the top of Kakontwe Fm. and below the surface soil
- ✓ Sub-centimeter scale banding of grey and white layers
- ✓ Commonly not mineralized, barren cover

A Eastern area of Fishtie

- All data (detailed logging, log from core photos and company log data) are compiled in Leapfrog 3D modeling software
- Basement depth, thickness of formations are calculated
- ✓ 6 sections generated
- ✓ Significant thickness
 variation in Mwaele Fm.
 (Grand Conglomérat)
- ✓ Lateral drastic facies changes

Eastern area of Fishtie

- This study identified significant thickness variations in the Mwaele Fm. (Grand Conglomérat) and four different facies in the Kakontwe Fm. in the eastern area of the Fishite deposit.
- ✓ The observed thickness and facies variations in the Kakontwe Fm. are abrupt and appear to be related to syn-sedimentary normal fault movement (~100m total offset).
- Higher copper and cobalt grades in the eastern area suggests that synsedimentary fault structures controlled the location of both copper and cobalt mineralization.

Acknowledgements

James Mwale, Robert Kaemba, Munshya Zimba, Tapiwa Mupakati, Bubile Nkhara, Boyd Kangwa, Eric Kangwa, Jackline Lumamba, Anahela Makumba, Lucia Nsontaulwa

✓ iCRAG UCD

Koen Torremans, Helen Twigg, Eoin Dunlevy

Subaru Tsuruoka

iCRAG Postdoctoral Research Fellow University College Dublin, Belfield, Dublin, Ireland <u>subaru.tsuruoka@icrag-centre.org</u>

