Can the latest generation of regional climate models reproduce European snow conditions and how do biases translate into uncertainties of snow cover projections?

Katharina Bülow ¹ Sven Kotlarski ² Christian Steger ³ Claas Teichmann ¹

¹ Climate Service Center Germany (GERICS), Hamburg
² Federal Office of Meteorology and Climatology MeteoSwiss, Zurich
³ Institute for Atmospheric and Climate Science, ETH Zurich, Zurich
The evolution of snow is relevant...

- Important **natural water ressource** (hydropower, water supply etc.)
- Importance for **tourism and recreation** in many regions
- **Natural hazards** (snow avalanches, spring meltwater, …)
- **Ecology, Agriculture, …**

- **Feedback** to the atmosphere!
- **Past decline of snow cover on hemispheric scales**
Objectives and Data

OBJECTIVES

• Evaluate state-of-the-art RCMs in terms of snow cover representation
• Derive 21st Century snow cover changes on European scale

DATA

• EURO-CORDEX RCM ensemble at 12 km resolution (EUR-11)
• 11 reanalysis-driven simulations
• 84 GCM-driven simulations
 (18 x RCP2.6, 17 x RCP4.5, 49 x RCP8.5)
Evaluation domain and methods

• Regions
 • Analysis for PRUDENCE domains (Christensen and Christensen, 2007)
 • Focus on regions with complex topography and/or high latitude: Alps (AL), Scandinavia (SC), Eastern Europe (EA), Iberian Peninsula (IP) and entire Europe (--)

• Methods
 • Snow day definition: ≥ 3 cm snow depth
 • Conversion of snow water equivalent (SWE) to snow depth with constant snow density: 312 kg m\(^{-3}\) (Sturm et al., 2010)
 • Indicators: **SWE**, snow-covered area, snow-covered period
Part I

Model Evaluation
Reference snow datasets

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
<th>Type</th>
<th>Spatial resolution</th>
<th>Temporal resolution*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERA-Int</td>
<td>ERA-Interim</td>
<td>Reanalysis</td>
<td>∼80 km</td>
<td>daily</td>
</tr>
<tr>
<td>ERA5</td>
<td>ERA5</td>
<td>Reanalysis</td>
<td>∼30 km</td>
<td>daily</td>
</tr>
<tr>
<td>ERA5-Land</td>
<td>ERA5-Land</td>
<td>Land surface model</td>
<td>∼9 km</td>
<td>daily</td>
</tr>
<tr>
<td>GLDAS</td>
<td>GLDAS Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.0</td>
<td>Land surface model</td>
<td>∼30 km</td>
<td>daily</td>
</tr>
<tr>
<td>UERRA-H</td>
<td>UERRA-HARMONIE</td>
<td>Reanalysis</td>
<td>∼11 km</td>
<td>daily</td>
</tr>
<tr>
<td>UERRA-MS</td>
<td>UERRA MESCAN-SURFEX</td>
<td>Land surface model</td>
<td>∼5.5 km</td>
<td>daily</td>
</tr>
<tr>
<td>JASMES</td>
<td>JASMES Northern Hemisphere daily snow cover extent</td>
<td>Remote sensing</td>
<td>∼5 km</td>
<td>daily</td>
</tr>
<tr>
<td>NSIDC-0046</td>
<td>Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent V4</td>
<td>Remote sensing</td>
<td>∼25 km**</td>
<td>weekly</td>
</tr>
<tr>
<td>NSIDC-0271</td>
<td>Global Monthly EASE-Grid Snow Water Equivalent Climatology V1</td>
<td>Remote sensing</td>
<td>∼25 km</td>
<td>monthly</td>
</tr>
<tr>
<td>GlobSnow</td>
<td>GlobSnow v3.0 NH SWE</td>
<td>Remote sensing</td>
<td>∼25 km</td>
<td>daily</td>
</tr>
</tbody>
</table>

*The temporal resolution refers to the one download.

**The native spatial resolution of the land snow observations used for this product (NOAA/NCDC Climate Data Record of Northern Hemisphere Snow Cover Extent) is ∼190 km.
Snow cover duration

- Yearly snow cover duration [days per year] averaged over 1989 - 2008* as represented by the CORDEX ensemble (ERA-Interim driven; black outline) and different observational and reanalysis datasets
- Generally **very good agreement** between CORDEX ensemble mean and reference data

*without the years 1994/1995 due to data gaps in the JASMES dataset
Mean Winter SWE

- Mean winter (NDJFMA) SWE [mm] over 1989 - 2006 as represented by the CORDEX ensemble (ERA-Interim driven, black outline) and different observational and reanalysis datasets
- CORDEX ensemble mean reveals higher SWE values in mountainous areas than most reference datasets
- Satellite-derived SWE products generally indicate lower SWE values (particularly NSIDC-0271)
Annual cycle of snow cover extent

- **Daily snow cover extent** [% of total area] averaged over 1989 - 2008* as represented by the CORDEX ensemble mean (ERA-Interim driven) and different observational and reanalysis datasets (grey shading)

*without the years 1994/1995
Biases in forcing

- Winter (NDJFMA) mean air temperature and precipitation for E-OBS and CORDEX ensemble mean (ERA-Interim driven; CORDEX - EOBS) averaged over 1989 - 2008*

- RCMs indicate a general **cold and wet bias**; particularly in mountainous regions.

*without the years 1994/1995 due to data gaps in the JASMES dataset
Part II

Future Projections

Note: preliminary results still under investigation!
Number of Snowdays (NDJFMA) Ensemble mean

- All three emission scenarios show a similar reduction till 2050
- RCP2.6 no further reduction after 2050
- RCP8.5 depicts the strongest reduction

(Values in the historical time period vary due to different ensemble members and size)
SWE change Scandinavia

- 30-year running mean change compared to (1971-2000) [%]

💥💥

needs revision
Summary and conclusions

- RCM-simulated snow cover overall realistic, but **important high-elevation biases possible**

- Possible reasons: (a) biased atmospheric forcing (b) missing/inappropriate treatment of perennial snow (c) neglect of important processes by simplified RCM snow cover schemes

- Climate scenarios indicate **important reduction of European snow cover** by end of 21st Century, even for RCP2.6

- Scandinavia/Alps: **Almost complete loss** at low elevations for RCP8.5

- Strong control by **temperature changes** and, hence, by driving GCM

- **Agreement** with earlier regional-scale studies using offline snow cover models
THANK YOU

Contact:

katharina DOT buelow AT hzg DOT de
sven DOT kotlarski AT meteoswiss DOT ch
christian DOT steger AT env DOT ethz DOT ch
claas DOT teichmann AT hzg DOT de
References

The present work is planned to be submitted to the journal «Atmosphere» (Special Issue «Cryosphere in and around Regional Climate Models», see https://www.mdpi.com/journal/atmosphere/special_issues/cryosphere_climate_models)