Energy Transfers Between Balanced and Unbalanced Motions in Geophysical Flows

Mesoscale eddies (balanced)

Internal gravity waves (unbalanced)

Manita Chouksey
Institut für Meereskunde, Universität Hamburg

Session NP1.1 Mathematics of Planet Earth

EGU 2020, May 4th 2020
Balanced and unbalanced motions

Geophysical flows

two timescale system

Internal gravity waves (unbalanced)

Unbalanced flows

» no balance
» high frequency

fast mode
gravity mode
Gravity manifold

Balanced flows

Mesoscale eddies (balanced)

» Geostrophic balance
» low frequency

slow mode
vortex/vortical mode
Rossby manifold

Non-linear interactions
Different dynamical regimes

Rossby number

\[
\text{Rossby number } \quad \text{Ro} = \frac{\text{flow frequency}}{\text{frequency of rotation}}
\]

- **Weakly stratified**
 - e.g. mixed layer

- **Strongly stratified**
 - e.g. ocean interior

\(\text{Ro} < 1 \)

Ageostrophic

- **Strongly coupled**
 - Timescale separation is complex

- **Weakly coupled**
 - Timescales well-separated

\(\text{Ro} \ll 1 \)

Quasi-geostrophic
Different dynamical regimes in the Ocean

Ro < 1

(Weakly stratified)

Ro << 1

(Strongly stratified)
Flow decomposition methods

Non-linear normal mode initialization (NNMI)

» Machenhauer (1977): Initially developed for Numerical Weather Prediction
 » The idea is to initially suppress gravity waves to minimize excitation
 » Leith (1980): Quasi-geostrophic balanced state (1st order in Ro), first iteration

» Warn et. al (1995): higher order in Ro (nth order)

Optimal balance

» Masur and Oliver, 2020, JGAFD : Optimal potential vorticity (OPV) balance based on Viúdez and Dritschel (2004) for a quasi-geostrophic balanced state
 » Iterative procedure
 » Ramp time to match a target potential vorticity
Modal decomposition

Single layer model (scaled):

\[\partial_t u + u + \nabla h = -Ro \ u \cdot \nabla u \]
\[\partial_t h + c^2 \nabla \cdot u = -Ro \ \nabla \cdot hu \]

Fourier space:

\[\partial_t \hat{z} - i A \cdot \hat{z} = Ro \ \hat{n} \]

Linear \hspace{1cm} \text{Non-linear}

vector \(\hat{z}(k) = (\hat{u}, \hat{v}, \hat{h})^T \)

\[A = \begin{pmatrix}
0 & -i & -k_x \\
i & 0 & -k_y \\
-c^2k_x & -c^2k_y & 0
\end{pmatrix} \]
Modal decomposition

Single layer model (scaled):

\[\partial_t u + \frac{u}{\rho} + \nabla h = -\rho_0 u \cdot \nabla u \quad \partial_t h + c^2 \nabla \cdot u = -\rho_0 \nabla \cdot hu \]

Fourier space:

\[\partial_t \hat{z} - iA \cdot \hat{z} = \rho_0 \hat{n} \]

Linear \hspace{1cm} Non-linear

Balanced mode

Eigenvalues: \[\omega^0 = 0 \]

Eigenvectors: \[q^0, p^0 \]

Projection: mode amplitude \[g^s = p^s \cdot \hat{z} \text{ with } s = 0, \pm \]

\[\partial_t g^s - i\omega^s g^s = \rho_0 p^s \cdot \hat{n} = -i\rho_0 l^s(g^0, g^\pm) \]

Unbalanced mode

Eigenvalues: \[\omega^\pm = \pm \sqrt{1 + c^2 k^2} \]

Eigenvectors: \[q^\pm, p^\pm \]

Projection: mode amplitude \[g^s = p^s \cdot \hat{z} \text{ with } s = 0, \pm \]

\[l^s(g^0, g^\pm) = l^s(g^0, 0) + l^s(0, g^\pm) + K^s(g^0, g^\pm) \]

from C-grid discrete operators
Modal decomposition

Modal representation: \[\partial_t g^s - i\omega^s g^s = Ro p^s \cdot \hat{n} = -iRo l^s(g^0, g^\pm) \]
\[(Ro \partial_T + \partial_{t^*}) g^s - i\omega^s g^s = -iRo (l^s(g^0, 0) + l^s(0, g^\pm) + K^s(g^0, g^\pm)) \]

Weak interaction assumption: weakly growing waves \(g^\pm = Ro f_1^\pm + Ro^2 f_2^\pm + \ldots \)

expansion in Ro as e.g. in Warn (1996), Kafiabad and Bartello (2017)

introduce fast and slow time scale with \(T = Ro t^* \) and \(\partial_t = Ro \partial_T + \partial_{t^*} \)

slow mode \(g^0 \) varies on \(T \) only, while fast mode \(g^\pm \) has two time scales \(t^* \) and \(T \)
Modal decomposition

» Modal representation:
\[\partial_t g^s - i \omega^s g^s = Ro \, p^s \cdot \hat{n} = -iRo \, l^s(g^0, g^\pm) \]
\[(Ro \, \partial_T + \partial_{t^*}) g^s - i \omega^s g^s = -iRo \, (l^s(g^0, 0) + l^s(0, g^\pm) + K^s(g^0, g^\pm)) \]

» Weak interaction assumption: weakly growing waves \(g^\pm = Ro \, f^\pm_1 + Ro^2 \, f^\pm_2 + \ldots \)
» expansion in Ro as e.g. in Warn (1996), Kafiabad and Bartello (2017)
» introduce fast and slow time scale with \(T = Ro \, t^* \) and \(\partial_t = Ro \, \partial_T + \partial_{t^*} \)
» slow mode \(g^0 \) varies on \(T \) only, while fast mode \(g^\pm \) has two time scales \(t^* \) and \(T \)

» SLOW MODE \(s=0 \)
\[\partial_T g^0 = -il^s(g^0, 0) \]
\[\partial_T g^0 = -il^s(g^0, f^\pm_1) + il^s(0, f^\pm_1) \]
\[\partial_T g^0 = -il^s(g^0, f^\pm_2) + il^s(0, f^\pm_2) - il^0(0, f^\pm_1) \]

» FAST MODE \(s=\pm \)
\[\partial_{t^*} f^\pm_1 - i \omega^\pm f^\pm_1 = -il^\pm(g^0, 0) \]
\[\partial_T f^\pm_1 + \partial_{t^*} f^\pm_2 - i \omega^\pm f^\pm_2 = -iK^\pm(g^0, f^\pm_1) \]
\[\partial_T f^\pm_2 + \partial_{t^*} f^\pm_3 - i \omega^\pm f^\pm_3 = -il^\pm(0, f^\pm_1) - iK^\pm(g^0, f^\pm_2) \]

» suppress any wave generation by \(\partial_{t^*} f^\pm_n = 0 \) \(\rightarrow \) ‘slaved’ modes \(f^\pm_n \)

» Machenhauer(1977)
» QG balanced state

» first order slaved mode

\[f^\pm_1 = l^\pm(g^0, 0)/\omega^\pm, \quad f^\pm_2 = (K^\pm(g^0, f^\pm_1) - i \partial_T f^\pm_1)/\omega^\pm, \ldots \]
Wave emission at higher orders: single layer model

Ro = 0.1

Balanced velocity

Residual (unbalanced) velocity

» double periodic domain 10x5 (dimensionless)
» initialized with an unstable zonal jet

» wave signal seen: is not related to spontaneous emission by shear instability of the balanced flow

» zonal jet meanders and dissolves into eddies
» range of Ro = 0.02 to 0.3, i.e. from mesoscale to sub-mesoscale conditions

» rather, the wave signal could be related to local Rossby numbers with $\text{Ro}_{\text{local}} > 1$: symmetric instability becomes possible

from Eden, Chouksey, and Olbers, JPO, 2019: Gravity wave emission by shear instability
(apparent) Wave emission at higher orders: primitive equation model

1st

- $w_1 \times 10^2$
- $w \times 10^2$

2nd

- $w_2 \times 10^3$
- $(w-w_1) \times 10^3$

3rd

- $w_3 \times 10^4$

4th

- $w_4 \times 10^5$
- $(w-w_1-w_2) \times 10^4$
- $(w-w_1-w_2-w_3) \times 10^5$

Apparent spontaneous emission or 1st or 2nd order slaved modes?

Balanced velocity

Residual (unbalanced) velocity

Weak wave signal is seen only at 4th order.
Convectively generated waves at higher orders: primitive equation model

1st

- a) $w_1 \times 10^2$
- b) $w \times 10^2$

Balanced velocity
Residual (unbalanced) velocity

2nd

- c) $w_2 \times 10^2$
- d) $(w-w_1) \times 10^2$

3rd

- e) $w_3 \times 10^2$
- f) $(w_1-w_2) \times 10^2$

Stronger wave signal seen already at 2nd order.
Wave generation scales exponentially at higher orders for large Rossby number, Ro.

Total residual wave energy normalized with the total energy integrated over the model domain.

Dashed lines: different power laws

Exponential scaling law $\exp(-2/Ro)$

Eden, Chouksey, and Olbers, 2019: Gravity wave emission by shear instability, JPO
The non-linear decomposition of balanced and unbalanced motions is achieved and implemented in model in different dynamical regimes up to fourth order.

- Machenhauer (1977) and Warn et al. (1995)

Balanced state is diagnosed in a single layer and primitive equation model using higher order Ro expansion.

- The use of C-grid discrete operators is important for the obtained balanced state.

Summary

- Convective instability generates gravity waves rather than spontaneous emission.

- Gravity wave generation scales exponentially at higher orders for large Ro.

- Spontaneous wave emission by shear instability is negligible.
balanced or unbalanced?!

It's as much numerics, as it's the realm of philosophy.