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Fig. 1. First order loss rates for CIONO,+HCl (a) and
CIONO,+H;O (b) for different parameterizations and aerosol types
for typical stratospheric conditions (50 hPa, 5 ppmv H>O, 1 ppbv
HCI, 0.5 ppbv CIONO,, 10ppbv HNO3, 0.15ppbv H,SO,4 and
10 background aerosol particles cm ™3 ). Solid red and blue lines de-
pict ternary aerosol, dashed lines binary aerosol. Solid green and or-
ange lines represent NAT particles with density 10~ em™3, dashed
lines 10~ ecm™>. Adapted from Dameris et al. (2007).
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Chlorine activation depends
strongly on the type and number
density (surface area) of Polar
Stratospheric Cloud (PSC) particles
present. This means that aerosol
microphysics and nucleation in
particular are key uncertainties in
predicting ozone recovery.

Wegner, T., GrooR, J.-U., von Hobe, M., Stroh, F., Sumirska-
Ebersoldt, O., Volk, C. M., Hosen, E., Mitev, V., Shur, G., and
Miller, R.: Heterogeneous chlorine activation on
stratospheric aerosols and clouds in the Arctic polar vortex,
Atmos. Chem. Phys., 12, 11095-11106,
https://doi.org/10.5194/acp-12-11095-2012, 2012.
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We previously showed that meteoric
fragments have sufficient activity to explain
observed crystal number concentrations.

James, A. D., Brooke, J. S. A,, Mangan, T. P., Whale, T. F., Plane, J. M. C., and Murray,
B. J.: Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric
material, Atmos. Chem. Phys., 18, 4519-4531, https://doi.org/10.5194/acp-18-4519-
2018, 2018.
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Our study made three key assumptions which must be
tested before we can produce a rigorous treatment of
nucleation to test in global modelling.

Firstly, we used binary HNO,/H,O solutions to
approximate liquid PSC, which actually contain
significant H,SO, at the temperatures where crystals
form.

Secondly, the n, parameterisation used assumes that
the nucleation process is stochastic, with the
thermodynamic saturation of the solution with respect
to the crystalline phase, S,, as the only determinant of
nucleation, and time dependence relatively
unimportant.

Thirdly, to assess the atmospheric implication of the
observed nucleation, we had to assume the phase
which forms first, and chose Nitric Acid Trihydrate
(NAT).

Figure 1.10: Concentration (a) and associated saturation ratio (b) of droplets

in equilibrium with a gas phase containing 0.4 ppb HNO3, 0.1 ppb H2SO04
and 4 ppm H20 as a function of temperature. Horizontal and vertical
green lines demonstrate the temperature and concentration at which the
solution is saturated with respect to Nitric Acid Trihydrate (NAT), Nitric

Acid Dihydrate (NAD) and H20 ice. After Carslaw et al. [1997].



Aims
* Investigate impact of H,SO, content.
* |nvestigate which phase forms first.

* Investigate time dependence, i.e. CNT vs. n
parameterisations.

This is a significant body of work to carry out with complex,
heterogeneous materials like meteorite samples, so:

* |nvestigate preferential nucleation of
individual phases on individual mineral
content of meteoric fragments.



Experimental method — nucleation by
components of fragments?

Or Raman
/ spectrometer
L-scope
~ objective ’
7 ~ 7 ~
*ﬂ "é} < L F
ARG T &
(<) ~ PR
N o) N r4 RS /
AT 7SN /s /
N\ ‘3},;. oY s {\c? /
AY \.5"@ ~ v O /!
O, ‘e ,’ QO /
o’
\ ‘ SoRY
Dry N, N N Dry N
&—— E . \"/ _ \'_I E < 2
- | GlassSlide | 3 :
@ - O ‘ ‘
Meteorite thin section |

ﬂ Light

* Plane polarised reflected light microscope
* Liquid droplets on meteorite thin section



* We observed repeated
nucleation and melting in
droplets of binary HNO, /
H,O on thin section of the
Allende meteorite.

* A total of 37 nucleation
events have been observed
so far, with up to 9 repeats
on individual droplets.

Nucleation did not show preference for particular sites on the surface, suggesting that
either a distribution of similarly active sites exists, or that the sites are destroyed by the
acid solution or the nucleation process.

In addition the crystals which form have some distinct visual differences.



Comparing to other recent work

a

T,

=-12.0°C

C
(001)

T.=-13.2°C

o-11 o-1 S-11

< . < <

g-12{ ° @-12 p-12

2 2 2

S.13 o3 ©-13

E g 8.-14

%-14 £-14 £

Fs F 15 =1 -

0O 2 4 6 8 10 12 14 0 5 10 15 20 0 5 10 15 20 25
Run Number Run Number Run Number

—_ o —_ o

d .=-11.8°C e T1.=-13.8°C
17 - 156k

Temperature (°C).

Temperature (°C)

10
Run Number

6 8
Run Number

Holden, M.A., Whale, T.F., Tarn,
M.D., O’Sullivan, D., Walshaw,
R.D., Murray, B.J., Meldrum, F.C.
and Christenson, H.K., 2019. High-
speed imaging of ice nucleation in
water proves the existence of
active sites. Science advances,
5(2), p.eaav4316.

In contrast, Holden et
al. tended to see
nucleation on
preferred sites for H,0O
ice on K-feldspar
(occasionally moves
but often returns).

This suggests that
nucleation in different
systems can proceed
by rather different
mechanisms.



Nucleating regions are heterogeneous

Composite © *

Narrowing down to active regions by
examining electron microscopy of thin
sections used for 9 events, we find three
kinds of region:

The highly processed edge of chondrules.

Olivine / pyroxene boundaries within
chondrules.

The edge of metal sulfide inclusions in
chondrules. (e.g. left figure, white box
shows region where crystal formed)

Since these features are unique to
meteorites, it is not possible to substitute
more easily obtainable proxies for
meteoric fragments.



“blank” results — no thin section
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Microscope observations of nucleation
events may also give some information
about the phase which nucleates.

Sometimes see a “bright” phase form
initially on nucleation. Melting
behaviour suggests this is H,O ice.
Often also observe this phase as a
secondary nucleation of further
cooling.



Raman singal a.u.
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Confirms that phase
melting at eutectic
temperature is H,O ice,
we were not able to
observe good enough
signal to noise to identify
nitric acid hydrates.



Probability tree
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Complex, poorly reproducible behaviour makes gathering statistically useful data on the
phase which forms extremely difficult



A new metastable phase?
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Three runs from
different droplets on
different thin section
samples nucleated at
H,O ice and NAD sub-
saturated conditions,
and did not melt as any
known phase.

This could indicate the
presence of a previously
unknown phase, or that
thermodynamics of a-
NAT or B-NAD are not
well represented by the
equilibrium phase
diagram.



Conclusions — thin section work

 Competitive nucleation of different phases by
meteoric fragments makes for a very complex
system.

* Nucleation does not appear to occur

preferentially on one type of region e.g. one
mineral.

* Nucleation observed in James, ACP (2018) was
likely a variety of phases, so parameterising as

NAT is a simplification... still the best we can
do.



Experimental method - effect of H,S0,?
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ﬂ Light

* Plane polarised reflected light microscope
* Array of droplets on glass slide



H,SO, deactivates meteoric fragments
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* 43 wt% HNO; used to suppress H,O ice formation.

* Adding 0.5 wt% H,SO, deactivates the heterogeneous nucleating ability of H,SO,.

* Initially samples were made up at room temperature. To investigate the temperature
sensitivity of this deactivation, solutions were made up in a cold bath.

* For cold bath T below 0 °C, meteorite was added to 60 wt% H,SO,, then mixed with
HNO; and H,0, such that crystalline phases were never thermodynamically stable in
bulk samples.

* Cold bath T of 253 K did not restore heterogeneous activity.
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H,SO, deactivates meteoric fragments
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H,O was never stable & NAD was always stable for the observed nucleation events



H,SO, deactivates meteoric fragments
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Straight lines are parameterisations of meteorite fragments (MFs, black) and meteor
smoke particles (MSPs, green) from previous work. An upper limit based on the
background here would not give sufficient number concentration in the atmosphere.
H,SO, deactivates heterogeneous nucleation activity of meteoric fragments.

James, A. D., Brooke, J. S. A,, Mangan, T. P., Whale, T. F., Plane, J. M. C., and Murray, B. J.: Nucleation of nitric acid hydrates in polar stratospheric clouds
by meteoric material, Atmos. Chem. Phys., 18, 4519-4531, https://doi.org/10.5194/acp-18-4519-2018, 2018.



Pathway to nucleatlon
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Proposed mechanism for
heterogeneous nucleation in
PSC:

Meteoric fragments sediment
rapidly through the
mesosphere and upper
stratosphere, but slow at PSC
altitude.

Fragments then take up HNO,
and H,O from the gas phase,
whilst H,SO, remains in liquid
droplets.

Highly dependent on the size
(sedimentation velocity) of
meteoric fragments. If too big,
stratospheric lifetime will be
too short, if too small, will
take up H,SO, and be
deactivated.



Smallest fragments

* COSIMA (aboard ROSETTA) has
shown that smaller
interplanetary dust is likely
stronger, made up of units 0.5
Kum or larger, so this can be
taken as the lower limit of
meteoric fragment size.

e The larger limit to fragment
size is poorly constrained. see
presentation by David Bones
on Wednesday afternoon
https://meetingorganizer.cope
rnicus.org/EGU2020/displays/3
6521
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HNO, surface distance / cm

Largest particle — sedimentation lifetime
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For a particle of the mass density of
a meteoric fragment, we calculate
sedimentation lifetime of one day
at 20 km is possible for particles up
to 5 um radius.
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H,SO, coverage / langmuir monolayers
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Using the altitude dependent fall speed,
[H,SO,] and v,,504 = 0.001 we calculate
surface coverage and integrate as the particle
falls to PSC altitude. This gives an upper limit
since HNO; and H,0 uptake will compete for
available surface area as the particle

sediments.

The smallest particles (0.5 um) will not be
significantly coated by H,S0O,, so are available
for heterogeneous nucleation.
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Fragment number concentrations

Atmospheric observations of the PSCs which have
not reached H,0 saturation have found crystal
number densities on the order of 1 x 10* cm3.

The fragment flux and sedimentation speed can be
combined to obtain a steady state concentration at
each altitude. Using the established flux of Halley
type comet particles (HTCs) and assuming that they
fragment to a power law distribution with the
largest particle 1/10t™ the parent mass gives the
number concentration plotted. In addition HTCs
produce the majority of ablated metals in the
mesosphere, so significant fragmentation would
require a significantly increased total flux.

Jupiter family comet (JFC) input is, however,
relatively poorly constrained, and may produce the
number of fragments required to match observed
cloud. This could mean that PSC can be used to
constrain the JFC flux to the Earth.



Conclusions:

* Multiple phases nucleate competitively on
different mineral components in meteoric

fragments.

* H,SO, deactivates heterogeneous nucleation
by meteoric fragments under Polar
Stratospheric Cloud conditions

* Fragments of Jupiter Family Comets may be in
the correct size range to sediment rapidly to
the stratosphere and cause nucleation
without interacting with liquid H,SO,.
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Measurements of PSC number concentration

CALIOP - satellite LIDAR data modelled
with Ny, >1 x 104 cm?3

Euplex geophysica aircraft
measurements 2003 - 6 x 10° cm™ at 18
km and 1 x 104 cm>3 at 20 km

Mother cloud NAT-rock formation
mechanism - >1 x 10° cm3

ER2 aircraft measurements 2000 —
2.3x10%cm3

Pitts, M. C., Poole, L. R., and Gonzalez, R.: Polar stratospheric cloud
climatology based on CALIPSO spaceborne lidar measurements
from 2006 to 2017, Atmos. Chem. Phys., 18, 10881-10913,
https://doi.org/10.5194/acp-18-10881-2018, 2018.

Voigt, C., Schlager, H., Luo, B. P., Dérnbrack, A., Roiger, A., Stock, P.,
Curtius, J., Vossing, H., Borrmann, S., Davies, S., Konopka, P.,
Schiller, C., Shur, G., and Peter, T.: Nitric Acid Trihydrate (NAT)
formation at low NAT supersaturation in Polar Stratospheric Clouds
(PSCs), Atmos. Chem. Phys., 5, 1371-1380,
https://doi.org/10.5194/acp-5-1371-2005, 2005.

Fueglistaler, S., Luo, B. P., Voigt, C., Carslaw, K. S., and Peter, Th.:
NAT-rock formation by mother clouds: a microphysical model
study, Atmos. Chem. Phys., 2, 93-98, https://doi.org/10.5194/acp-
2-93-2002, 2002.

Fahey, D. W., Gao, R. S., Carslaw, K. S., Kettleborough, J., Popp, P.
J., Northway, M. J,, ... & Winkler, R. H. (2001). The detection of
large HNO3-containing particlesin the winter Arctic stratosphere.
Science, 291(5506), 1026-1031.



