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• Uncertainties in projected changes in soil carbon 
storage are key components of the uncertainties in 
the global carbon budgets for the Paris Agreement 
Targets.

• Uncertainty has remained across CMIP generations.

• Important as potential large positive feedback.

Soil Carbon Turnover Time = Soil Carbon / heterotrophic 
respiration

Background – Importance of soil carbon turnover time



We use the spatial variation of soil carbon 
turnover, τ!, to estimate the sensitivity of τ!
to temperature.

Method – Temperature sensitivity of τ!

Harmonized world soil database (2012), The northern circumpolar soil carbon database: spatially 
distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions (2013).
CARDAMOM 2001-2010 global carbon Model-Data Fusion (MDF) analysis, (2015).
The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim 
reanalysis data (2014).

Soil carbon – Cs, Heterotrophic respiration – Rh, Soil carbon turnover time - 𝜏!

τ! =
C!
R"



Method – testing principle

τ! =
C!
R"

∆C!,$ = R",%∆τ!Change in Soil Carbon due to a change 
in Soil Carbon Turnover:

Equation for Soil Carbon Turnover:

Soil carbon – Cs, Heterotrophic respiration – Rh, Soil carbon turnover time - 𝜏!

∆τ!=τ!&'(')* − τ!"+!(,)+-./where, 

We can calculate ∆C!,# using:

1. Model output data

2. Derived τ!-temperature relationships 

We can define a polynomial relationship 
to represent the temperature sensitivity of 
τ! for the models and observations.



We find that the spatial variation of τ!
enables us to estimate the change in soil 
carbon for each model. 

Method – testing principle

We can calculate ∆C!,# using:

1. Model output data (y-axis)

where,

2. Derived τ!-temperature relationships (x-axis)

where,

τ! =
C!
R"

∆C!,$ = R",%∆τ!

∆τ!=τ!&'(')* − τ!"+!(,)+-./

∆C!,$ = R",%∆τ!

∆τ! = p𝑜𝑙𝑦𝑓𝑖𝑡(𝑇$%&%'() − 𝑝𝑜𝑙𝑦𝑓𝑖𝑡(𝑇)*+&,'*-./)



Result – Spatial Emergent Constraint

We have showed our method holds, so can use the 
observational spatial temperature sensitivity of τ! to 
predict ∆C!,# (x-axis).

This allows us to obtain a spatial emergent constraint on 
the change of global soil carbon due to the temperature 
sensitivity of soil carbon turnover for the 2℃ global 
mean warming on CMIP6 (y-axis).

Uncertainty in projections reduced from -245 ± 122 PgC
to -242 ± 68 PgC.



Result – effective q10 sensitivity

By obtaining an emergent constraint on ∆C!,# for 
differing levels of global mean warming, we can infer 
an effective q10 sensitivity on heterotrophic 
respiration.

Our emergent constraint predicts an effective q10 
sensitivity of approximately 2.5.

This inferred q10 sensitivity is dependent on the 
initial observational carbon stocks.

∆C!,$ = C!,%[exp((−0.1*logq10)∆T)−1] 



Result – effective q10 sensitivity

We can compare our constrained effective q10 range to the original CMIP6 model spread.
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