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Ancient volcanic eruptions are 

valuable time markers

Fig. 1: Volcanic eruption.

Step 1. Identification of NAAZ II (55 380 ± 1184 

b2k*)
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Tephra (volcanic ash) shards ejected from volcanoes are deposited over large

geographical areas in different geological environments and can act as regional

time-parallel marker horizons. The geochemical distinct signature of tephra shards,

often distinct, allows for identification of the source volcano system and, in some

cases, the specific eruption from which the shards originate. Geochemically

distinct tephra shards embedded in marine sediment sequences have a proven

potential to be utilized as a key correlational tool the synchronization of

paleoclimatic events within the marine realm, but also across different climate

archives. Here, we utilize the identification of the instantly deposited and wide-

spread tephra marker NAAZ II (II-RHY-1) deposited during Greenland Interstadial

Fig. 2: Map of study area. Study sites are marked by yellow dots. Solid lines represent main surface currents and dotted line main deep currents.  

Deep-water formation sites in the Labrador Sea and Nordic Seas are also marked.

Fig. 3: Tephra shard concentration profile from Labrador Sea core GS16-204-22CC (Rutledal et al., 2020).

Step 2. Synchronization of paleorecords

Fig. 4: Biplot comparison of tephra shard analyses (major element oxides) from marine sediment cores GS16-204-22CC and MD95-

2010 to the NAAZ II (II-RHY-1) geochemical data from the North Atlantic marine tephra framework (grey shaded area) (Austin et al., 

2004; Wastegård et al., 2006: Brendryen et al., 2011; Abbott et al., 2016, 2018) and from the Greenland ice core GRIP (black line) 

(Grönvold et al., 1995). Error bars represent 2 standard deviations of replicate analyses of Lipari Obsidian reference glass. 1Rutledal 

et al. (2020), 2Abbott et al. (2018).

NAAZ II (II-RHY-1) was successfully identified in core GS16-204-22CC

from the Labrador Sea (Rutledal et al., 2020) and in core MD95-2010 from

the Norwegian sea (Abbott et al., 2018). The tephra layers are interpreted

to be near-instantaneously deposited and is thus useful as correlational

time-markers in future studies.

15 to synchronize paleorecords across the

North Atlantic Basin. The study focuses on

ocean temperature and salinity changes and

therefore, we use already available δ18O & δ13C

data coupled with new Mg/Ca records, from

benthic and planktic foraminifera.

*Preliminary results and ongoing work. Do not reuse*

The identification of the NAAZ (II-RHY-1) ash in both sediment cores allows for a

robust correlation of paleo-proxy records from both sites across the Greenland

Interstadial (GI) 15 transition. During GI-15, overall the data indicates similar

surface water conditions at the two sites, apart from a slight freshening of the

surface waters in the Norwegian Sea relative to the Labrador Sea (likely related to

increased Ice Rafted Debris input). Contrarily the Mg/Ca temperature record from

benthic foraminifera indicates a cooling in the Norwegian Sea deep waters relative

to the Labrador Sea. Unfortunately, benthic stable isotope data is not yet ready

from the Labrador Sea site.

Fig. 5: Proxy data from cores MD95-2010 and GS16-204-22CC. IRD and Stable isotopes GS16-204-22CC (Griem 

et al., 2019) and MD95-2010 (Dokken and Jansen 1999). Mg/Ca data (this study). NAAZ II (II-RHY-1) marked by 

yellow cross.
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