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1. Introduction 
The calculus of Exterior Differential Forms was created by an  
ingenious French mathematician Elie Cartan (1869-1961) on the 
turn of the last century.  

Beginning with twenties Cartan’s method started to penetrate 
into diverse domains of mathematics, first of all in differential  
geometry, in the theory of J. Pfaff’s systems and differential 
equations, in the theory of Lie’s groups and in the integral  
calculus. 

The stimulus of this paper comes from the work devoted  
by professor Zbyněk Nádeník to differential geometry and its ap-
plications in geodesy. It is, therefore, natural to start with the in-
troductory pages of his paper in Studia geophysica et geodaetica, 
15(1971), pp. 1-6, that follow: 
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2. Support Function 
In this section we start from Holota P. and Nádeník Z.: Les formes 
différentieles extérieures dans la géodésie II: Courbure moyenne. 
Studia geophysica et geodaetica, 15 (1971), pp. 106-112. We sup-
pose that S  is a convex surface, so that 31 32[ ] 0ω ω ≠ . 

Let further the normal vector N  in the point 
S∈x  be oriented to the half space that is 

defined by the tangent plane in the point 
S∈x  and does not contain the surface S . 

In this case  
h = ⋅x N  

is a support function of S  defined on 
the sphere Ω  with parameterization  

(cos cos ,cos sin ,sin )ϕ λ ϕ λ ϕ=N  

where 1 1
2 2,ϕ π π∈〈− 〉  and 0,2λ π∈〈 〉  are  

geographical coordinates.  

N

N
h

x
S

Ω
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3. Dual Representation of the Surface  S  
The unit tangential vectors 

  ( sin cos , sin sin ,cos )ϕ ϕ λ ϕ λ ϕ
ϕ

∂
= = − −
∂
NN  

1 ( sin , cos ,0)
cos cos

λ λ λ
ϕ ϕ λ

∂
= = − −

∂
N N

 

of parametric lines on the unit sphere Ω  are tangential vectors of 
the surface S  too and one can easily show that 

( / cos ) 0ϕ λ ϕ⋅ =N N  ,     0ϕ ⋅ =N N  ,     ( / cos ) 0λ ϕ ⋅ =N N  

Thus they form a trirectangular trihedron and one can deduce 
that 

( , )
cos cos

hh h λ λ
ϕ ϕϕ λ

ϕ ϕ
= ⋅ + ⋅ + ⋅

Nx N N  

i.e. the surface S  is represented by the support function h with 
respect to the moving trihedron given by N , ϕN  , / cosλ ϕN  . 
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• Now in general, putting 

1 1 2 2 hτ τ= + +x t t N  
we determine parameters 1τ  and 2τ  . Using Cartan’s lemma, we 
have 

31 1 2a bω ω ω= +      and     32 1 2b cω ω ω= +  
where 

1 2

1 1a c
R R

+ = +      and     2

1 1

1 1ac b
R R

− = ⋅  

is the mean and Gauss curvature of our surface S . 
 
• Subsequently, the calculation of  dx   and the comparison with 

1 1 2 2d ω ω= +x t t  
immediately yield 

1 1 2 21 31d hω τ τ ω ω= + +   ,     2 2 1 12 32d hω τ τ ω ω= + +  

1 31 2 32dh τ ω τ ω= +  
where 1 1hτ =  , 2 2hτ =  are derivatives with respect to 31ω  and 32ω . 
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Hence, from the results above we obtain 
31 2 1 32

1 2 2
31 32

[ ] [ ] 2
[ ]

R R h hω ω ωω ∆
ω ω

+
+ = = +  

21 2
1 2 2 2

31 32

[ ]
[ ]

R R h h h hωω ∆
ω ω

= = + +∇  

where 
1 2 21 32 31 2 1 12 1 32 2 31

2
31 32 31 32

[ , ] [ , ] [ ( ]( )
[ ] [ ]

dh h dh h d h hh ω ω ω ω ω ω∆
ω ω ω ω

+ + + −
= =  

is Beltrami’s differential operator of 2nd order with respect to Ω  
(i.e. the sphere) and recall that in coordinates ϕ  and λ  it reads 

2

2 2 2
1 1cos

cos cos
h hh∆ ϕ

ϕ ϕ ϕ ϕ ϕ
 ∂ ∂ ∂

= + ∂ ∂ ∂ 
 

Similarly,         1 2 21 2 1 12
2

31 32

[ , ]( )
[ ]

dh h dh hh ω ω
ω ω

+ +
∇ =  

is also a differential operator of 2nd order with respect to Ω . 
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4. Weingarten’s Formula 
The first formula above, i.e.  

1 2 22R R h h∆+ = +  
has been derived by Weingarten in 1884 and was also a point of 
departure for Hurwitz’s classical proof of Christoffel’s theorem, 
who wrote: 
„In Folge dieses Satzes kann die Gestalt der Fläche E  mit jeder 
beliebigen Genauigkeit  bestimmt werden, wenn man im Stande 
ist, für eine genügende Anzahl von Punkten derselben, über  
deren gegenseitige Lage keine anderweitigen Angaben erforder-
lich sind, 1. die sphärische Koordinaten ihres wahren Zeniths, 
und 2. die Summe der in ihnen stattfindenden Hauptkrümmungs-
halbmesser zu ermitteln.“ 
_____ 
see E.B. Christoffel: Über die Bestimmung der Gestalt einer 
krummen Oberfläche durch geodätische Messungen auf dersel-
ben. Journal für die reine und angewandte Mathematik 64(1864), 
193-209.  
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5. Christoffel’s Theorem - Proof 
To see that the theorem really holds, suppose that h can be  
developed into a convergent series 

0 1 2h h h h= + + + 
of surface spherical harmonics ih , 0,1,2,i =  . Thus 

1 2 2
0

2 ( 1)( 2) n
n

R R h h n n h∆
∞

=

+ = + = − − +∑  

In parallel suppose that 

1 2
0

n
n

R R Q
∞

=

+ =∑  

where nQ  are the respective surface spherical harmonics. Hence 
1

( 1)( 2)n nh Q
n n

= −
− +

    for     0,2,3,i =  

Moreover, one can easily show that 1 0Q ≡  identically, so that h 
is determined apart from 1h , but this depends just from the  
position of the origin of coordinates. 
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6. Generalizatized Weingaten Formula 
Weingarten’s formula can be also generalized in the following 
sense: 
 
Together with  S   consider another surface  S∗  that has its 
spherical image on  Ω  , similarly as the surface  S .  Let  h∗  be  
the support function of  S∗.  
 
Then, putting  

                H h h∗= −  

we easily obtain 
 
 

1 2 1 2 2( ) 2R R R R H H∆∗ ∗+ − + = +  
 
 

x H

N

N

N

S∗

S ∗x

O
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7. Interpretation in terms of Classical 
Physical Geodesy 

In case that S  is the reference ellipsoid and S∗ the geoid  
the generalized Weingarten formula, i.e.  

1 2 1 2 2( ) 2R R R R H H∆∗ ∗+ − + = +  
has an interesting interpretation. In order to see it, recall that in 
physical geodesy (within some approximation) we usually put 

TH
G

=      where G  is a mean value of gravity over the Earth 

and T  is the value of the disturbing potential 
1

0
( , , ) ( , )

n

n
n

RT r T
r

ϕ λ ϕ λ
+∞

=

 =  
 

∑  

for r R= , where R is a mean radius of the Earth. 
 
In the next step recall also that T  meets Laplace’s equation 

0T∆ = , i.e. 
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2 2
2

2 2 2
1 12 cos 0

cos cos
T T T Tr r

rr
ϕ

ϕ ϕ ϕ ϕ ϕ
 ∂ ∂ ∂ ∂ ∂

+ + + = ∂ ∂ ∂∂ ∂ 
 

which means that 
2

2
22 2 0T Tr r T

rr
∆∂ ∂

+ + =
∂∂

 

where 2

2 2 2
1 1cos

cos cos
T TT∆ ϕ

ϕ ϕ ϕ ϕ ϕ
 ∂ ∂ ∂

= + ∂ ∂ ∂ 
 

is  Beltrami’s differential  operator applied on  T .  Hence 

[ ]
2

2
2 2( , , ) 2

r Rr R

T TT R R R
rr

∆ ϕ λ
==

∂ ∂
= − −

∂∂
 

and obviously 
2

2
2 2

1 1( , , ) 2
r Rr R

T TH T R R R
G G rr

∆ ϕ λ
==

 ∂ ∂ = = − +    ∂∂   
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Thus 
2

2
1 2 1 2 2 2

1( ) 2 2 2
r R

T TR R R R H H T r r
G r r

∆∗ ∗

=

 ∂ ∂
+ − + = + = − − ∂ ∂ 

 

Moreover, taking into account that  
1

0
( , , ) ( , )

n

n
n

RT r T
r

ϕ λ ϕ λ
+∞

=

 =  
 

∑  

we can interpret the above formula (i.e. Weingarten generalized 
formula) in terms of a series development, indeed: 

1 2 1 2
0

1( ) ( 1)( 2) n
n

R R R R n n T
G

∞
∗ ∗

=

+ − + = − − +∑  

The results above enables to compute also the anomaly J∆  of 
the Mean Curvature. In the figures below one can see that with 
increasing resolution the anomalies J∆  of the Mean Curvature 
grow. 
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Figure 1.  Anomaly J∆  of the Mean Curvature of the level  
surface 0W W=  with respect to Reference Ellipsoid (GRS80).  
W  (EGM2008) represented by a spherical harmonic development 
up to degree  60n =  (left) ;  up to degree  120n =  (right). 
 
 
 
 
 
 
 
 
 
 
   10 106 10 , 6 10J m m∆ − −∈〈− ⋅ + ⋅ 〉          9 92.2 10 , 2.2 10J m m∆ − −∈〈− ⋅ + ⋅ 〉 

which means that (approximately) 
   3 36 10 , 6 10i iR R m m∗ − ∈〈− ⋅ + ⋅ 〉          4 42.2 10 , 2.2 10i iR R m m∗ − ∈〈− ⋅ + ⋅ 〉  
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Figure 2.  Anomaly J∆  of the Mean Curvature of the level  
surface 0W W=  with respect to Reference Ellipsoid (GRS80).  
W  (EGM2008) represented by a spherical harmonic development 
up to degree  360n =  (left) ;  up to degree  720n =  (right). 
 
 
 
 
 
 
 
 
 
 
   9 98 10 , 8 10J m m∆ − −∈〈− ⋅ + ⋅ 〉          8 81.4 10 , 1.4 10J m m∆ − −∈〈− ⋅ + ⋅ 〉  

which means that (approximately) 
   4 48 10 , 8 10i iR R m m∗ − ∈〈− ⋅ + ⋅ 〉         5 51.4 10 , 1.4 10i iR R m m∗ − ∈〈− ⋅ + ⋅ 〉 
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Figure 3.  Anomaly J∆  of the Mean Curvature of the level  
surface 0W W=  with respect to Reference Ellipsoid (GRS80).  
W  (EGM2008) represented by a spherical harmonic development 
up to degree  2160n = . 

                  global view                                          Himalayas region 

 
 
 
 
 
 
 
 

8 86 10 , 6 10J m m∆ − −∈〈− ⋅ + ⋅ 〉  
which means that (approximately) 

5 56 10 , 6 10i iR R m m∗ − ∈〈− ⋅ + ⋅ 〉  
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Figure 4 (for comparison). Same regions as in Figure 3, but 
characterized by geoid undulations for 2160n = . 
 
 
                  global view                                          Himalayas region 
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8. Final Remark:  
Mean Sea Surface and Geoid 

Weingarten’s (generalized) formula 

1 2 1 2 2( ) 2R R R R H H∆∗ ∗+ − + = +  

can also be applied in case that S  is the reference ellipsoid as 
above and that for a potential W  we are looking for a level  
surface 0 .W W W const∆= + =   that approximates the Means Sea 
Surface  S∗. Indeed, we put 

T WH
G
∆−

=      where      
1

0
( , , ) ( , )

n

n
n

RT r T
r

ϕ λ ϕ λ
+∞

=

 =  
 

∑  

and in analogy to our results above we arrive at 
2

2
1 2 1 2 2

1( ) 2 2
2 2

r R

G T TW R R R R T r r
r r

∆ ∗ ∗

=

 ∂ ∂ = + − + − − −   ∂ ∂ 
 

or 
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1 2 1 2
0

1( ) ( 1)( 2)
2 2 n

n

GW R R R R n n T∆
∞

∗ ∗

=

 = + − + + − +  ∑  

The use of this result is also the goal of our future work focused 
on the determination of the constant W∆ .  Motivation also 
comes from the expected fine-scale ocean surface topography 
observations with the Surface Water and Ocean Topography 
(SWOT) Mission planned for launch in late 2021. 
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TThhaannkk  yyoouu  ffoorr  yyoouurr  aatttteennttiioonn  !! 
 
AAAccckkknnnooowwwllleeedddgggeeemmmeeennntttsss...      
TTThhheee   wwwooorrrkkk   ooonnn   ttthhhiiisss   pppaaapppeeerrr   wwwaaasss   sssuuuppppppooorrrttteeeddd   bbbyyy   
ttthhheee   MMMiiinnniiissstttrrryyy   ooofff   EEEddduuucccaaatttiiiooonnn,,,   YYYooouuuttthhh   aaannnddd   SSSpppooorrrtttsss   
ooofff   ttthhheee   CCCzzzeeeccchhh   RRReeepppuuubbbllliiiccc   ttthhhrrrooouuuggghhh   PPPrrrooojjjeeecccttt      
NNNooo...   LLLOOO111555000666...   TTThhhiiisss   sssuuuppppppooorrrttt   iiisss   gggrrraaattteeefffuuullllllyyy   
aaaccckkknnnooowwwllleeedddgggeeeddd...   
 
 
 
 
 
 
 
 
 
 


