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0 What are base metals and why do we care?

@ Is there a relationship with lithospheric structure?

@ Why are giant deposits in cratonic rifts?
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Our results indicate that the edges of thick lithosphere place first-order controls on the genesis of these extensional basins and their associated mineral systems. Rifting causes
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necessary for deposit formation. The adjacent unstretched cratons provide a bountiful source of oxidised sediments and extensive low-elevation platforms that enhance
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Radiation shielding organic carbon. Thinning of the lithosphere in the centre of the basin causes decompression melting, providing mafic and felsic volcanic rocks from which metals are scavenged.
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Intercalation of proximal and distal facies components is further modulated by transient vertical motions, generally thought to be associated with edge driven convection across
Is outstripping discovery of new deposits. lithospheric steps. Nevertheless, these mineral system components are common to both thick lithospheric rifts and regular passive margins, and the question remains:

i What is favourable about rifting cratonic lithosphere for formation of the shallow hydrothermal systems necessary to produce giant deposits?
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