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New constraints on the Sulfur isotope signature of the sub-continental 
lithospheric mantle wedge: in situ δ34S analyses of pentlandite from orogenic 

garnet-bearing peridotite of the Ulten Zone, Eastern Italian Alps
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(a) UZ is part of the Tonale Nappe in the Italian Alps and (b) 
simplified sketch of the Ulten Zone and sample location after 
Langone et al. (2001) and Consuma et al. (2020)

Ulten Zone (UZ) is an exhumed tectonic mélange of  Variscan age, 
composed by grt-ky-bearing  gneisses and migmatites embedding lenses 
of orogenic grt-bearing peridotites

‣ Exhumed (ultra-)HP rocks provide a 
tangible material to directly study the elements 
cycles in subduction settings
‣ S behaviour is complex during slab 
metamorphism and metasomatism
‣ Still significant uncertainties on the 
speciation, flux and isotopic composition of S  
(Li et al. 2020)
‣ S isotope composition of mantle wedge is 
poorly constrained 

Goals:
➮ Unravel S sources of sulfides locally 
associated with carbonates occurring in 
the Ulten Zone peridotites
➮ Provide constraints on the S isotope 
signature of the orogenic mantle

Big Picture

a
b
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‣  Base metal sulphides (BMS), within mantle-
derived peridotite are largely composed of 
monosulphide solid solution (MSS) and 
intermediate solid solution (ISS)

‣  Sulfides solid solutions forming at high-T 
are not stable at lower temperatures and 
tend to re-equilibrate to polymineralic 
sulfide assemblages

‣ Sulfur isotopes provide an excellent 
geochemical tool to investigate HT-
mantle processes due to minimal isotope 
fractionation at HT and large differences 
between mantle and crustal reservoirs

➮ In-situ 34S analyses of multiple generations of 
sulfides with a well-constrained petrography is 
necessary to understand the evolution of S 
throughout the metamorphic evolution of UZ 
peridotites
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‣  3 main lithotypes: coarse-grained spinel peridotite (CP),  
fine-grained garnet-amphibole peridotite (FGP), 
fine-grained chlorite-amphibole peridotite (FCP). 

‣FGP-FCP interpreted as derivatives of CP.  Serpentinization 
increases from CP to to FCP.

‣  Hydrous phases + carbonates + sulfides assemblages in multiple 
t ex tu r a l pos i t i on s sug ge s t several stages of 
metasomatism involving H2O-C-S liquids throughout 
the UZ metamorphic evolution.  

P-T path of the UZ peridotites 
and carbonate formation 
stages related to influxes of 
liquids into the peridotites. 
See Consuma et al. (2020) for 
a detailed explanation.

➮ Provenance of C-S-bearing fluids still uncertain /72

Sulfur Isotopes
Ulten peridotites: good to 

investigate the deep S cycling



Two hypotheses:

Figure modified after Lo Po’ et al. 2020.
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“Huge” cm-sized garnet 
from M. Hochwart

Mm-sized garnet 
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‣Pyrrhotite (Po) grains were 
predominantly found in P10B 
garnet as PI

‣Outside garnet, only 
pentlandite (Pn) have been 
found interstitial in the matrix

➮ 2) Po (+Pn) is related to local 
garnet-fluids reaction at the initial 
stage of exhumation (following 
Lo Po’ et al. 2020)

➮ 1) Large garnet may have 
preserved HT-sulfide assemblages 
(but here not negative shapes!)

‣PI in mm-sized garnet 
consists of Pn with 
occasionally chalcopyrite 
(cpy) or chalcocite (cc)

‣No Po have been found in 
garnet nor in the matrix
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Petrography of sulfides: polycristalline inclusions (PI) in garnet



In kelyphitic corona Interstitial in matrix
In spinel, orthopyroxene 

(not PI)
In carbonates/

serpentine veins

‣Pn is the dominant sulfide phase of UZ peridotites
‣Rare Po grains as PI found in cm-sized garnet
‣Pn ±heazlewoodite ±millerite in FCP
‣Cpy, Cc and Sphalerite were found only in porphyroclastic FGP 
in association with garnet and its kelyphitic corona
‣Occasionally, nickeline (Ni, As) blebs (3-5µm on average) were 
found within interstitial Pn grains or Pn associated with serpentine 
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Compositions of BMS from UZ peridotites in the Fe-Ni-S system 
at 250°C and atmospheric pressure. Phase relationships and 

Mss1 and Mss2 compositional fields after Craig (1973)

‣  Pentlandite is ubiquitous with variable composition:  
 Fe: 22.8-39.5 wt%; Ni: 28.8-37.8 wt%; Co: 0.4-16.5wt%

‣ Pn in PI and other grains fall in the typical mantle sulfides range

Fe (at%) Ni+Co (at%)

S (at%)
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MOL1-C
18LP1
SBA2 

*microstructural positions from samples UNx and P10B currently unavailable (office inaccessibility!)
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Major Element Compositions

-

Pyrrhotite
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‣Limited isotope signature variation for in situ 
analyses of Pn (δ34S ∼ −1.6 to 3.8 ‰) with an average 
of δ34S= -0.11 (n=15) for matrix Pn in fine-grained peridotites 
and δ34S= 2.83 (n=20) in coarse-grained peridotites

‣Isotopic variability of Pn in a serpentine vein is due to isotopic 
fractionation coupled with the removal of light S during 
serpentinization at T<600°C

Upper panel: Reservoirs data from 
Giuliani et al. (2016), Walters et al. (2019), 
and references therein

sulfides in SCLM peridoties  and in AOC

MOL1-C (CP)

18LP1 (CP)

SBA2 (CP)

MOL1-C (CP)

VM10A (FGP)

KL1-A (FGP)

KL2.4-3 (FGP)

KL2.4-2b (FGP)

D
ep

le
te

d 
m

an
tle

 (L
ab

id
i e

t a
l. 2

01
3)

sulfides in MORBs 

sedimentary py

in srp vein

in dol vein

matrix

 in kelyphite

in PI in spinel

-2 -1 0 1 2 3 4

δ34S

For Methods see LaFlamme et al. (2016) /76

Frequency of measured δ34S 
of pentlandite grains with 

probability denser curve (PDP)

Sulfur isotopes as geochemical tracer: SIMS analyses of pentlandite grains
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Thank you! 
giulia.consuma@unibo.it 

PhD student - University of Bologna
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‣The rare preservation of Po and the overall 
occurrence of Pn suggests that Pn ±Po probably derive from 
re-equilibration  of mss to low-T, whereas Ni-rich sulfides 
may have formed from (Ni,Fe)3±xS2 

‣Assuming limited S isotope fractionation during re-
equilibration of high-T mantle sulfides to pentlandite-bearing 
assemblages at T of about 600°C (see discussion in Lorand 
and Gregoire, 2006) we suggest that our Pn grains mostly 
preserve a mantle-like isotopic signature 

‣Mantle-like sources are required for S-bearing fluids 
(as also suggested for C-bearing fluids by using in situ Sr 
isotope of associated carbonates, Consuma et al. 2020). 
Mantle-like signature for both S-C is a key finding for the 
UZ peridotites and unexpected considering the strong 
interaction with crustal fluids

‣The overall occurrence of Pn and occasional Nickeline blebs 
suggest a late influx of hydrothermal fluids capable to 
remobilize Ni from a sulfide source

‣ PGE analyses of sulfides 
‣ Build a model based on textural observations, compositional-

isotopic data for the source, medium, and timing of introduction 
of volatiles into the mantle wedge
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Conclusion Remarks Future Directions
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