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When considered individually, incremental physical alterations to the
Earth’s climate have large hydrological repurcussions...
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-50% to + 50% in baseflow relative to baseline (1971-2000)!
[Marx et al., 2018]




Elevated CO,

Rising atmospheric carbon dioxide
concentrations may increase streamflow
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+ 40-60% in runoff by doubling atmospheric carbon

[Idso and Brazel, 1984]

...as elevated atmospheric CO, can trigger closing of

stomata, and thus a reduction in evapotranspiration
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Multifactor modeling scenarios profuce more complex
outputs ...

... elevated temperature and atmospheric
CO, may drive higher plant production

ultimately increasing hydrological demands

and limiting runoff in the northern hemisphere

(dd) 4/s AMV

24 -18 =12 -6 O 6 12 18 24 [Mankin et al., 2019]

—1
WY runoff gains < BWT (mm WY ™) WY canopy gains
(canopy losses) (runoff losses)




But little experimental evidence of these interaction effects exists ...
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Ecohydrological implications rarely considered (if ever)
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[Hardie et al., 2011]

...where we can observe persistent changes to physical hydrology in the
vadose zone (e.g., due to extreme/abnormal drying and wetting cycles
altering soil structure)




...thus, it is as important to study controlled climate
manipulation at a small scale, directly ...

... as 1t 1s to extrapolate from less certain global
Earth Systems sytheses
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Simulated
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Preliminary Results
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+ 150 ppm CO, & + 150 ppm CO, &

Considering annual fluctuations ... Ambient Temp. (15 min) 1.5 °C warming (15 min)
@ 36 cm soil depth
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Time -Annual cycles in soil mosture explain ~ an order of magnitude more variation in root zone

moisture fluctuations for + 150 ppm CO, & ambient temperature compared to those
subjected to + 150 ppm CO, & 1.5 °C warming!

-This suggests that the relative importance of seasonal recharge to subsurface moisture
partitioning may becomed damped with incremental warming in these mountain
grasslands.



