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The philosophy of the EEF method [5] is rooted in using self-

information of a random variable, defined by Shannon’s

information theory [8] for selection, to provide direction in the

inherent randomness of ensemble models which are created by

bootstrapping. In this work, the focus is on selecting an ensemble

of training datasets before model training (Fig1).

Figure 1: How modified Bagging works?

Synthetic Data Simulation [5]:

We use artificial sinusoidal signal that we corrupt with noise before

model training to examine the model’s capability to capture the

essence of the signal from the noisy signal. The noisy signal was

used as an input in the bagging procedure to generate an ensemble

of input datasets, the chosen members by the EEF method are used

for training ANN’s and subsequently generating the simulation

result for each member. The predictions were evaluated by

calculating root mean square error (RMSE) against the target

signal. To get insight in the trade-off between ensemble size (i.e.,

computation time) and accuracy in terms of RMSE, analysis of the

error gradient with growing ensemble size was conducted (Fig3).

In this analysis, the decrease in prediction error was compared

between using the EEF method and conventional bagging with

increasing ensemble size.

Sea Surface Temperatures (SST) Forecasts [6]:

The application of the EEF method is evaluated in neural network

modeling of El Nino-southern oscillation. The goal is to forecast

the first five principal components (PCs) of sea surface temperature

monthly anomaly fields over tropical Pacific (Fig4), at different

lead times for the period 1979–2017. The model’s structure

developed by Wu et al. [7] is adopted, where sea level pressure

(SLP) field and SST anomalies over Tropical Pacific were used to

predict the five leading SST principal components at lead times

from 3 to 15 months. The EEF method (Fig2) is applied in

multiple linear regression (MLR) model and two neural network

models, one using Bayesian regularization (labeled as BNN) and

one Levenberg-Marquardt algorithm (labeled as NN) for training,

and evaluate their performance. The conventional bagging uses 30

and 12 (labeled with no subscript and rand subscript, respectively)

ensemble members for model training. In EEF method (labeled

with subscript E), ensemble size is reduced to be 40% of the

original one (Fig2).

Advanced computational methods, including artificial neural networks

(ANN), process input data in the context of previous training history

on a defined sample database to produce relevant output. To avoid

negative effects of over-fitting, an ensemble of models is sometimes

used in prediction. Bagging (abbreviated from Bootstrap

AGGregatING) [1] developed from the idea of bootstrapping [2] in

statistics. Despite its common application, the bagging method is

considered to be computationally expensive, particularly when used to

create new training data sets out of large volumes of observations [3–

4].

In this poster, we combine materials from the Entropy Ensemble Filter

(EEF) method [5] and its first real-world application [6] to highlight

the method's advantages and limitations. Entropy can be defined as

uncertainty of a random variable or, conversely, the information that

samples of that random variable provide. In this work, entropy is used

as a measure of information content for each bootstrap resample of the

dataset. The method selects high entropy bootstrap samples for

ensemble model training, aiming to maximize information content in

the selected ensemble. We applied our proposed method on a

simulation of synthetic data with the ANN machine learning

technique. Also, its application is tested in forecasting the tropical

Pacific sea surface temperatures (SST) anomalies based on the neural-

network forecast model proposed by Wu et al. [7].

Machine learning is the fast-growing branch of data-driven

models, and its main objective is to use computational

methods to become more accurate in predicting outcomes

without being explicitly programmed. In this field, a way to

improve model predictions is to use a large collection of

models (called ensemble) instead of a single one. Each model

is then trained on slightly different samples of the original

data, and their predictions are averaged. This is called

bootstrap aggregating, or Bagging, and is widely applied. A

repeated question in previous works was: how to determine

the bagging ensemble size of training data sets for tuning the

weight in machine learning? The computational cost of

ensemble-based methods scales with the size of the ensemble,

but excessively reducing the ensemble size comes at the cost

of reduced predictive performance. The choice of ensemble

size was often determined based on the size of input data and

available computational power, which can become a limiting

factor for larger datasets and complex models’ training. In this

research, it is our hypothesis that if an ensemble of artificial

neural networks (ANN) models or any other machine learning

technique uses the most informative ensemble members for

training purpose rather than all bootstrapped ensemble

members, it could reduce the computational time substantially

without negatively affecting the performance of simulation.

𝐻𝑀 = −෍𝑝(𝑥) log2 𝑝(𝑥)

Figure 2: The flowchart of Entropy Ensemble Filter (EEF) method applied in 

the study [6].
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1) The EEF method’s idea of ranking and selecting the

informative ensemble can lead to filter out outliers in

large ensemble.

2) The EEF method can be useful to meet the computational

power constraints for the continual arrival of new data,

that necessitates frequent model updating. This method

can make Bagging feasible for big datasets and complex

model training.

3) For this particular case with small ensemble (30 samples),

however, the conventional Bagging draws random

ensemble that closely resemble the optimal ensemble

from the EEF method. Thus, the neural network model

with both bagging methods produced equally successful

forecasts with the same computational efficiency.

Figure 6: Forecast performance (correlation) per pixel of the forecast 

reconstructed from 5 PCs at lead times of 3–15. Top row: BNNE model, middle 

and bottom rows: comparison of performance of NNE and MLRE over BNNE [6].

Figure7: Weighted mean correlation and computational time for all models [6].

Figure 3: The error gradient analysis for sinusoidal signal and 1000 initial 

bootstrapped ensemble [5].

Figure 4: Spatial patterns of the first five PCA modes for the SST anomaly field [6].

Figure 5: Correlation skill of predictions of the five leading principal components of 

the SST fields at lead times from 3 to 15 months [6].
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