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Introduction-Dataset

Currently, more and more countries make a shift towards renewable energy to reduce the environmental

impact of the use of the fossil fuels. Wind energy has a significant position in this hierarchy, as one of the

most efficient to be converted to electric energy, covering the society’s needs in the fields of transportation,

trade and consumption.

The probabilistic distributions of wind speed are a critical piece of information needed in the assessment of

wind energy potential. According to the literature, the distribution that is widely used to imitate the

behaviour of wind speed is two parameter Weibull. In this work we use various distributions such as

Weibull, Rayleigh, Gamma, LogNormal, Generalized Pareto, Pareto, Nakagami, Generalized Gamma and

Pareto Burr Feller distribution.

For the comparison of the distributions, we evaluate the fitting performance of these, on the empirical

distribution from the data of the MIT station. To achieve this goal, we two goodness of fit parameters in

statistics analysis, chi square (χ2) and root mean square error (RMSE). The expressions of these parameters

are illustrated, analytically, in the second chapter of the presentation.



Introduction-Dataset

As dataset it was chosen the observations of MIT station in Cambridge, Massachussets, USA. This station

looks credible and includes a high number of observed values (hourly) and a low percentage of zero values

(1.03%).

The number of non-zero observations is 584196 with a minimum value of 0.1667 m/s and maximum value

of 38.6 m/s. In the following table, the statistical characteristics of the dataset are shown:

MIT WIND DATA STATION

Period of observations: 71 years (1943-2014)

MIN MAX MEAN
STANDARD 
DEVIATION

COEFFICIENT OF 
KURTOSIS

COEFFICIENT OF 
SKEWNESS

0.1667 38.6 5.4780 2.4307 4.7178 0.8988
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Presentation of distributions

 Weibull distribution

The most common distribution for the research of the behaviour of surface wind speed in the literature.

Akpinar et al.(2009), Xu et al.(2015), Carta et al.(2009), Alavi et al.(2016), Mert et al.(2014), Conradsen et

al.(1984), Amaya-Martinez et al.(2014), Lechner et al.(1992), Campisi-Pinto et al.(2020) model wind speed

with the two parameter Weibull distribution.

The mathematic expressions of cdf and pdf are given, respectively by Conradsen et al(1984):

cdf: 𝐹 𝑥; 𝑎, 𝑏 = 1 − exp −
𝑥

𝑏

𝑎
pdf: 𝑓 𝑥; 𝑎, 𝑏 =

𝑎

𝑏

𝑥

𝑏

𝑎−1
exp −

𝑥

𝑏

𝑎

where 𝑥, 𝑎, 𝑏 are wind speed, shape parameter and scale parameter, respectively.

 Rayleigh distribution

The Rayleigh distribution was originally derived by Lord Rayleigh, and can be expressed as a special case

of Weibull distribution Ganji et al.(2016) with scale parameter 𝑏 = 2 and shape parameter 𝑎 = 2𝜎

cdf: 𝐹 𝑥; 𝜎 = 1 − e− ൗ𝑥2 2𝜎2 pdf: 𝑓 𝑥; 𝜎 =
𝑥

𝜎2
ⅇ− ൗ𝑥2 2𝜎2



Presentation of distributions

 Gamma distribution

Another one distribution that has been proposed from Amaya-Martinez et al.(2014) and Alavi et al.(2016)

and it seems to fit quite well the observed data values, is the Gamma distribution.

The mathematic expressions of cdf and pdf are the followings:

cdf: 𝐹 𝑥; 𝑎, 𝑏 = 𝛾 Τ𝑎, 𝑏, 𝑥 𝛤 𝑎 pdf: 𝑓 𝑥; 𝑎, 𝑏 =
𝑏𝑎𝑥𝑎−1ⅇ−𝑏𝑥

𝛤 𝑎

where 𝛾(𝑎, 𝑏, 𝑥) is the lower incomplete gamma function.

 LogNormal distribution

This distribution has not been proposed in many articles about wind speed, although is referenced in Carta

et al.(2009) and Alavi et al.(2016) and we use, not the hybrid, but the classic type in this work, without the

zero values of the dataset.

cdf: 𝐹 𝑥;𝑚, 𝜎 =
1

𝑥𝜎 2𝜋
exp

− log 𝑥−𝑚 2

2𝜎2
pdf: 𝑓 𝑥;𝑚, 𝜎 =

1

𝑥𝜎 2𝜋
exp

− log 𝑥−𝑚 2

2𝜎2



Presentation of distributions

 Generalized Pareto distribution

Generalized Pareto distribution is a distribution, which is used for extreme phenomena like floods and

extremes rainfalls, due to is close relationship with extreme values. For wind speed was used by Lechner et

al.(1992) and Holmes et al.(1999) and it contained in our work.

The mathematic expressions of cdf and pdf, as the are given by Hosking et al.(1987), are the followings:

cdf: 𝐹 𝑥; 𝑎, 𝑘 = 1 − 1 − 𝑘 Τ𝑥 𝑎 Τ1 𝑘 pdf: 𝑓 𝑥; 𝑎, 𝑘 =
1

𝑎
1 −

𝑘𝑥

𝑎

1

𝑘
−1

 Pareto distribution

More precisely, is called pareto II or Lomax and has close relationship with Generalized Pareto distribution

concerning the extreme values.

The mathematic expressions of cdf and pdf, as they are given by Koutsoyiannis.(2019a):

cdf: 𝐹 𝑥; 𝜆, 𝑘 = 1 − 1 +
𝑘𝑥

𝜆

− Τ1 𝑘
pdf: 𝑓 𝑥; 𝜆, 𝑘 =

1

𝜆
1 +

𝑘𝑥

𝜆

− ൗ1 𝑘−1



Presentation of distributions

 Generalized Gamma distribution

The generalized gamma distribution has been proposed by Mert et al.(2014) and Campisi-Pinto et al.(2020)

and is a generalization of Weibull distribution with three parameters.

The expression of the pdf is given by Mert et al.(2014):

cdf: 𝐹 𝑥; 𝑎, 𝑏, 𝑘 = 𝛾 ΤΤ𝑥 𝑏 𝑘 𝛤 𝑎 pdf: 𝑓 𝑥; 𝑎, 𝑏, 𝑘 = 𝑘𝑥𝑎−1e𝑥𝜌 ൗ− Τ𝑥 𝑏 𝑘 𝑏𝑘𝑎𝛤 𝑎

 Nakagami distribution

This distribution is a special case of generalized gamma distribution with two parameters and also has close

relationship with Weibull distribution and its flexibility. Introduced for first time to imitate the behavior of

wind speed by Alavi et al.(2016)

cdf: 𝐹 𝑥;𝑚, 𝛺 = 1 − 𝛾 Τ𝑚,𝑚 Τ𝑥2 𝛺 𝛤 𝑚 pdf: 𝑓 𝑥;𝑚, 𝛺 =
2𝑚𝑚

𝛤 𝑚 𝛺𝑚
𝑥2𝑚−1e

−
𝑚

𝛺
𝑥2

where 𝛺 = 𝐸 𝑥2 and 𝑚 = 𝐸 ൗ𝑥2
2

𝐸 𝑥
2
− 𝐸 𝑥2

2
𝑚 ≥

1

2
.



Fitting of distributions

 Pareto Burr Feller (PBF)

A three parameter distribution which is also known as Pareto III, Burr XII and Feller. The name “PBF” was

introduced by Koutsoyiannis et al.(2018a), and is an excellent distribution to describe the wind speed

behavior combining the asymptotic properties of Weibull distribution for low wind speeds and Pareto

properties for large ones (Koutsoyiannis et al.(2018a)).

The mathematic expressions of cdf and pdf are the followings:

cdf: 𝐹 𝑥; 𝜆, 𝑧, 𝜉 = 1 − 1 +
𝑥

𝜆

𝑧 −
1

𝑧𝜉
pdf: 𝑓 𝑥; 𝜆, 𝑧, 𝜉 =

1

𝜆𝜉

𝑥

𝜆

𝑧−1
1 +

𝑥

𝜆

𝑧 −
1

𝑧𝜉
−1

• Goodness of fit parameters

We use two parameters to compare how the predicted values of the previous distributions fit to the observed

data from the station. According to literature, two of the most credible and usable parameters are RMSE and

chi square error (χ2).

𝑅𝑀𝑆𝐸 is given by Costa Rocha et al.(2011): 𝑅𝑀𝑆𝐸 =
1

𝑁
෌

𝑖=1

𝑁
𝑦𝑖 − 𝑥𝑖

2
Τ1 2

where 𝑦𝑖 are the predicted

and 𝑥𝑖 is the observed values.

𝜒2 is given by Thomson et al.(2014): 𝜒2 =෍
𝑖=1

𝑁
𝑓𝑖−𝐹𝑖

2

𝐹𝑖
where 𝑓𝑖 is the ith predicted value and 𝐹𝑖 is the

observed, respectively.



Fitting of distributions

• Maximum Likelihood estimation

The method estimates the parameters to maximize the likelihood function of independent randomly

observed sample.

Because of the complexity in the solution of partial differential equations to achieve the previous goal, we

choose to maximize the logarithm of the function, Koutsoyiannis.(1996):

𝐿 𝑥1, … , 𝑥𝑛, 𝜃1, … , 𝜃𝑝 = ln𝑓𝑥1,…,𝑥𝑛 𝑥1, … , 𝑥𝑛, 𝜃1, … , 𝜃𝑛 =෍

𝑖=1

𝑛

𝑙𝑛𝑓𝑥 𝑥𝑖1𝜃1, … , 𝜃𝑟

Equation to maximize the L() logarithmic likelihood:

𝜕𝐿 𝑥1,…,𝑥𝑛,𝜃1,…,𝜃𝑟

𝜕𝜃𝑘
=෍

𝑖=1

𝑛
1

𝑓𝑥 𝑥𝑖,𝜃1,…,𝜃𝑟

𝑓𝑥 𝑥𝑖,𝜃1,…,𝜃𝑟

𝜕𝜃𝑘
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Methodology of K-moments

The classical moments, even if useful as theoretical concepts their estimation is not reliable for moment

order beyond 2 or three Lombardo et al.(2014). For this reason the classical moments for higher than this

order have been termed “unknowable” by Koutsoyiannis et al.(2019b).

In contrast, K-moments allow estimation for high order statistics p, with significant reliability. Something

that justifies and their name “Knowable”. The definitions of K-moments by Koutsoyiannis.(2018b) are the

followings:

Noncentral K-moments are defined as:

𝐾𝜌𝑞
′ = 𝜌 − 𝑞 + 1 𝐸 𝐹 𝑥

𝜌−𝑞
𝑥𝑞

With the same way, central K-moments are defined as:

𝐾𝜌𝑞 = 𝜌 − 𝑞 + 1 𝐸 𝐹 𝑥
𝜌−𝑞

𝑥 − 𝜇
𝑞

Finally, the definition of tail-based (noncentral) K-moments is the following:

ഥ𝐾𝜌𝑞
′ = 𝜌 − 𝑞 + 1 𝐸 ത𝐹 𝑥

𝜌−𝑞
𝑥𝑞



Methodology of K-moments
The creation of unbiased estimators of K-moments is based on the analysis by Landwehr et al.(1979) for the

production of unbiased estimators on probability weighted moments and L-moments.

The combination of the definition of K-moments with order statistics, and more specifically the quantity

F(x))p-q with the arrangement of the sample in ascending order we can think the estimators of the form:

෡𝐾𝜌𝑞
′ =

𝜌 − 𝑞 + 1

𝑛
෍

𝑖=1

𝑛

𝐹 𝑥 𝑖:𝑛

𝜌−𝑞
𝑥 𝑖:𝑛
𝑞

෡𝐾𝜌𝑞 =
𝜌 − 𝑞 + 1

𝑛
෍

𝑖=1

𝑛

𝐹 𝑥 𝑖:𝑛

𝜌−𝑞
𝑥 𝑖:𝑛 − Ƹ𝜇

𝑞

෡𝐾𝜌𝑞
+ =

𝜌 − 𝑞 + 1

𝑛
෍

𝑖=1

𝑛

2𝐹 𝑥 𝑖:𝑛 − 1
𝜌−𝑞

𝑥 𝑖:𝑛 − Ƹ𝜇
𝑞

In our work, we use the noncentral estimator of K-moments which does not depend on 𝑥 𝑖:𝑛 but only in i

and n with the introduced of parameter 𝑏𝑖,𝑛,𝜌 to create a new definition: ⅈ ≥ 𝜌 ≥ 0

෡𝐾𝜌𝑞
′ =෍

𝑖=1

𝑛

𝑏𝑖,𝑛,𝜌−𝑞+1𝑥 𝑖:𝑛
𝑞

with 𝑏𝑖𝑛𝜌 =
𝜌

𝑛

𝛤 𝑛−𝜌+1

𝛤 𝑛

𝛤 ⅈ

𝛤 ⅈ−𝜌+1
ⅈ ≥ 𝜌 ≥ 0 𝑞 = 1 .



Methodology of K-moments
 Return periods

The final step of the method is to find the empirical and theoretical return periods and to succeed the

minimum error of the fitting with each other with the RMSE method.

The expression for the theoretical return period:

𝑇 𝑥

𝐷
=

1

1 − 𝐹 𝑥

where 𝐹 is the cumulative distribution function.

The empirical return period for the estimated K-moments can be expressed by the relationship:

𝑇 𝐾𝜌
′

𝐷
= 𝜌 ⋅ 𝛬𝜌

where 𝜌 is the moment order.

For the approximation of the quantity 𝛬𝜌, we can use the following relationship which is given by

Koutsoyiannis.(2018b):

𝛬𝜌 = 𝛬∞ + 𝛬1 − 𝛬∞
1

𝜌



Methodology of K-moments

In the following table are referenced the value of 𝛬1, 𝛬∞,β,Β for a range of functions which have been used

in our work and the are illustrated in the next chapter.

Function 𝛬1 𝛬∞ 𝛽 𝐵

PBF

1 +
𝐵

1
𝑧𝜉

−
1
𝑧 ,
1
𝑧

𝑧

𝑧
1
𝑧𝜉 𝛤 1 − 𝜉

−
1
𝜉

- -

GAMMA 𝛤 Τ𝑎 𝛾 𝑎, 𝑎 1.781 0 −0,154 ln 𝑎

WEIBULL

e
𝛤 1+

1
𝑏

𝑏 1.781 0 1 − e𝛾

ln 2
− 0,07 +

0.92

𝜁
+
0,23

𝜁2

e𝛾 = 1,781

Finally, we estimate the parameters of every function by minimizing the mean square error of the

logarithms of the empirical and theoretical return period focusing on extremes (the tail of the distribution ).
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Results-Conclusions
The left diagram shows the fitting of all the probability density functions with the empirical distribution from

the observed data. The right one shows the same functions for the cumulative distribution function,

correspondingly. The parameters of the functions have been estimated from maximum likelihood method.

As a general remark, the GPD and Pareto distributions are not suitable to express the behaviour of wind

speed for the dataset and secondarily the Rayleigh distribution seems to fit not as well as the other 5

functions. The calculation of the error is the tool that could help to find the most effective distribution.



Results-Conclusions
The two diagrams show the results of the two goodness of fit parameters. It is clear that the function with the

best fit on the observed data is the Pareto Burr Feller (PBF), which is highlighted with green colour in the

two diagrams. The distribution that gives the maximum error is Rayleigh, as it had been forecasted from the

previous distribution diagrams.



Results-Conclusions
In the next three diagrams the K-moments are presented for three distributions (PBF, Gamma and Weibull) to evaluate

the behaviour of these in comparison with the curve of distributions with parameters from maximum likelihood method.

As general remark, it is obvious that for the three different distributions the curves with parameters which

are estimated by K-moments concern the distribution tail, in contrast with the curves from maximum

likelihood method which have a quite satisfactory behaviour for the body but are failed to fit in the

distribution tail. In comparison of the three distributions the PBF seems to fit perfect in the entire set of

values, especialy the PBF curves from K-moments present an almost perfect fit and for large return periods,

but both the curves from different methods are close to each other, showing that PBF is the appropriate

function to imitate the wind speed behaviour.



Results-Conclusions
The left diagram for the PBF distribution is the same as the previous page, but now it is compared with the

diagrams of the other two distributions with the curves that has been produced from the estimated, of

maximum likelihood method, parameters.

The order statistics of the left diagram are the same as the observed data in the other two. Using middle and

right diagram’s data, it is shown that the simulated values curves, in which the y-axis presents random values

and x-axis the values of return period
𝑇

𝐷
=

1

1−𝐹
, respectively, with the maximum likelihood’s parameters, fit,

exactly, in the curves of our dataset with parameters of maximum likelihood (orange split line). These

curves, even if have quite good adapt in the body of distribution, in any case they cannot approach the

extreme values, like the PBF.
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