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Why nowcasting?

@ Prediction up to 6 hours
(World meteorological
organization)

Applications:

@ Short-term weather predictions
for air traffic control.

@ Early warning systems for flooding
@ Outdoor event planning
@ Road conditions, traffic

management
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Principle of radar nowcasting
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Fig: Radar nowcasting principle [Fabry et al.,
2009]
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Nowcasting using radar: pros and cons

Advantages:
@ Computationally efficient

@ High spatial and temporal accuracy (e.g. 1 km and 5 min)
Disadvantages:
@ Radar data can be noisy (clutter, blockages, interference, ...)

@ Vertical variability, attenuation, calibration, ...

@ Radar does not measure rainfall rate but reflectivity. Z-R relation is
sensitive to drop size distribution

@ Can only predict what has already been observed. Predictions tend to lag

behind true state.
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State model formalism

@ Target A and measurement area A’

@ Spatio-temporal rainfall field:
us = [Ut(X1)7...,Ut(XN)]T, 2
[Xl,...,XN] c A.

@ u: can be radar reflectivity or rainfall rate e —— A

@ Dynamic model : ‘ u: =Hu 1 +qe

Targetarea

q:: stochastic process noise.

Measurement area
. . A
@ Estimation of N? parameters :

computationally expensive for large A. Fig: Target and measurement area
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Estimation of H;

@ Estimation of vec(H:) from u; = (u_; ® In) vec(H:) + q: .
| —

Nx N2

@ Simple(iterative) least squares approach:

h. = arg min||ut*Xht||§a (1)
h

t

where h; = vec(H;), and X = ul ; ® Iy.
@ ForHi~Hfort=1,..., T
ug ® Iy

ul ® Iy
X = ,

T
ur, 1 ® Iy NT. x N2

@ (1): single snapshot, and (2): multiple snapshot ahead prediction.
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Generalized optimization problem to estimate H;

@ Underdetermined system of equations u; = (utT,l ® In) vec(H:) + q: .
—_——
Nx N2

@ Regularization using prior spatial information regarding h; = vec(H;),
given by f,(h:). (e.g. sparsity, covariance structure)

he = arg min[Jlu; — Xhe[}3 + Aufo(he)], (3)
ht N———
Data

@ Can also use predictions from a numerical weather prediction model):

he = arghmin[Ilut — Xhe |3 + Amlllie — Yhe|5 + Asfo(he)], (4)

t

Data NwWP
—_nT
where Y = i1;_; ® In.

@ Weights A5, A\m tuned based on the accuracy of NWP and prior.
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Modelling rainfall dynamics using a scaled affine transform

@ Assuming an affine transformation followed by scaling 6 (transformation)
+ 1 (scaling) parameters.
@ Transform:

ur(X) = arue—1(xj), ar >0, X; € A, where

Xi air a2 a3 [xi Xi
Vil = a1 a2 axs| |yi| =M |yi] . (5)
1 0 0 1 1 1

@ Estimating the best ¢, M; using consecutive snapshots.

0 20 4 6 80 100
xarea

Fig: Affine coordinate transform
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Radar reflectivity to rainfall

Rainfall Event on 03:30 a.m., 12.07.2019:

Total area : 700 x 765 pixels with spatial resolution 1 km?.
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Selected measurement area and target area

Measurement area : 100 x 100, Target area: 15 x 15.
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Performance analysis

Used data: Rainfall Event from 03:30 - 04-30 a.m., 12.07.2019
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Example of tracking the dynamics using affine transform

(simulated field)

No transformation: u ; =9 With transformation : u (prediction); t =9 True value tu ct+1=10
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Fig: One step ahead prediction using the scaled affine transform model; No. of

pixels: 100 x 100 can be predicted by only 7 parameters
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@ The regularized (iterative) least squares method outperforms Lagrangian
persistence for single step ahead prediction. However, performance
decreases for multiple step ahead predictions.

@ Computational cost quickly grows with size of target area. Scaled affine
transformations are less accurate but computationally more efficient.

@ External information from NWP can be incorporated into the state model
estimation problem using a multi-objective optimization framework.

@ The combination of statistical radar extrapolation with physical
knowledge from a NWP leads to better multiple step ahead predictions.
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