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Scope of the work

I We present an extension of the Metastatistical Extreme Value
Distribution (Marani and Ignaccolo 2015; Zorzetto, Botter, and
Marani 2016) aimed at quantifying estimation uncertainty in
extreme value modelling of hydrological time series.

I The interannual variability of hydrological variables is described
through a ‘slow’ latent variable level varying with yearly time
scale.

I Elicitation of informative prior distributions allows for the
inclusion of physical information aimed at reducing estimation
uncertainty.

I Here we present an application to daily rainfall extremes over
the continental United States, and report a benchmark
comparison to other extreme value models.



Model Structure

Observed quantities:
I xij = i − th event

magnitude in block j
I nj = number of events in

block j
We specify parametric models
for event magnitudes θj and
occurrence λ. Magnitudes
parameters θj are in turn
generated by a latent yearly
parametric model η

Schematic structure of the
hierarchical model. Observed
quantities are grey-shaded,
parameters in white:

We model the non exceedance probability of annual maxima y as

P(Y ≤ y | λ, η) =
Nt∑

n=0

∫
Θ

F (y ; θ)ng(θ; η)p(n;λ)dθ.



Prior elicitation

We need to specify prior distributions for the model of event
magnitudes and frequency of occurrence:

I Weakly informative prior for the occurrences’ model (nj)

I Informative priors for the magnitudes (xij) model. These can
be based on:
I Shape parameter priors based on the analysis by Wilson and

Toumi (2005), e.g., prior belief of sub-exponential tails.
I Scale parameter priors can be based on information on climatic

variability, or empirical, based on observations of the local
rainfall characteristic intensity.



Posterior computation

I Analytical expression for the posterior distribution is not
available, so we use an approximation obtained by a Markov
Chain Monte Carlo (MCMC) approach. Based on the posterior
distribution of the model’s parameters, functionals of interest
such as the cumulative probability ζ(y) of a value y can be
approximated by the expectation over B MCMC posterior
draws:

ζ̂MC (y) = 1
B

B∑
b=1

ζ̂(b)(y). (1)

I In the case of time series with significant correlation, we
decluster the time series following the procedure proposed by
(Marra et al. 2018).



Example of application to the New York Central Park time
series

Data source: NOAA USHCN Station ID USW00094728 (Menne et
al. 2012)



Posterior predictive checks

Posterior predictive checks for annual maxima (a), yearly number of
events (b), and all daily values (c). Observed densities are in black,
and MCMC replicates in blue.



Estimation of quantiles from small samples

Example of quantile estimates from the model described here
(HMEV) and comparison with other extreme value models for a
sample time series (POT, GEV). Estimates are compared to
in-sample (triangles) and out-of-sample (circles) data points



Mapping return levels and relative uncertainty

50-years return level and relative uncertainty. The color indicates
the magnitude of the expected 50-years daily rainfall, while the
marker size is proportional to the relative width of the posterior 90%
probability intervals.



Measuring predictive accuracy
To measure the predictive accuracy of the model (with posterior
predictive distribution approximated by B posterior draws) for n
annual maxima values yi , . . . yn we use:

1. The log pointwise predictive density, or lppd:

lppd = −1
n

n∑
i=1

log
(
1
B

B∑
b=1

p(yi |θ(b))
)

(2)

2. The log posterior marginal likelihood, or lpml (Gelfand and Dey
1994):

lpml = −1
n

n∑
i=1

log

[ 1
B

B∑
b=1

1
p
(
yi | θ(b))

]−1 (3)

Here we use the difference between lpml and lppd to quantify a
model’s tendency to overfit a sample of annual maxima. Both
measures are evaluated numerically from B = 4000 MCMC posterior
draws.



Effective number of parameters

Effective number of parameters of different models, based on the
difference between lpml and lppd. Including more data in the
analysis tends to reduce overfit to the annual maxima.



Testing model performance

Benchmark with other extreme value models, including log posterior
predictive density (lppd) and a fractional square error (fse)
computed for return times Tr > 2 years.



Contributions

I We introduce a hierarchical model for describing extremes of
environmental time series.

I Building on the Metastatistical Extreme Value Distribution,
this approach now allows to quantify estimation uncertainty
through a Bayesian approach.

I This method can reduce estimation uncertainty for small
sample sizes, as evaluated using out-of-sample data for
independent validation.

I Our analysis underlines the importance of out-of-sample
validation for extreme value models. When long time series are
not available for independent cross validation, in-sample
techniques such as lpml can help inform model selection.
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