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q Background -  The main issues of this study
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@ Background -  The main issues of this study

Pore water
chemistry
monitoring

Precipitation

>

In a near-surface context
carbonate reservoirs form
complex karst-systems.

This karstic shape is
driven by chemical reactions
caused by the water flux.

| ——

Which methods | _ Gk -
should we use to limes,
study dissolution and

precipitation processes?

Pore water
conductivity

Geo-e.lect.rlcal 4 Self potential (SP)
monitoring
P

Spectral induced
polarization (SIP)




Q Background -  Presentation of the geophysical methods

(Binley and Kemna, 2005)

. . . C+ C-
Spectral induced polarization
This electrical method is conducted . a fl: d )ii a__
through the injection of an electrical g Y - "B
current and the measure of the Wenner

resulting voltage with unpolarizable

electrodes. Current electrodes

Unpolarizable potential electrodes

The alternating current is injected at
several frequencies.

The measured voltage is sinusoidal: From Ghorbani (2007) — Alternating current |
it oscillates at the same frequency — Measured voltage dV
but is temporally shifted.
dV ()
I(w)

* = ip(w)
The resulting resistivity is a complex x p'(w) = |p(w)].e

number which possesses an
amplitude and a phase.

Amplitude

[/ \\
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Q Background -  Presentation of the geophysical methods

Spectral induced polarization -_:_-Almpn;).dc ol
phasc

The SIP method allows to get the
spectra of these two values over
the explored frequency range.

Amplitude
-Phase

While the amplitude is linked to
the microstructure of the porous
medium, the phase gives also
insights about the mineral

surface state. From Ghorbani (2007) — Alternating current |
— Measured voltage dV

This information is crucial for the
study of rock-water chemical
processes.

dv (w)
I(w)

x p*() = |p(w)]. e P

[/ \\

Amplitude
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Q Background -  Presentation of the geophysical methods

Spectral induced polarization

The study of Wu et al. (2010)

highlights that during

precipitation of calcite grains in a

glass beads packed cell:

* The phase peak grows

 And is shifted towards low
frequencies.

Leroy et al. (2017) developed a
mechanistic model to interpret
this evolution as the growth of
the grains’ size during the
experiment.
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Q Background -  Presentation of the geophysical methods (Binley et Kemna, 2005)

Self potential « ®

=
Z ‘h'-lu

This passive method measures the Wenner
electrical current generated by

natural sources. Unpolarizable potential electrodes

These sources can be:
* Electrokinetic
* Electrochemical

Cherubini et al. (2019) measured
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SP signal of brine flowing through g
limestone. g,
* The electrokinetic source is =
observed at the beginning of the M‘E
experiment | — aw
* Then the electrochemical source — b.
is added with the injection of CO, SP reaches a " % s 53 i
with the brine. plateau after CO, release Time (min)
CO, release i Equilbrium .

Cherubini et al. (2019)
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Experimental setup

r4 Alkalinity

Pore water
chemistry
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Time-line Reach a
stationary
I - Initialization state III - Precipitation

Fluid injection and measurements

Sampling
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x results

Pore water
monitoring

Upstream and
downstream pore
water electrical
conductivity

Saturation state
calculated from the
measurements of
water samples
collected downstream
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Experimental
results

Spectral induced polarization results

I - Initialization

During all the experiment, we
observed no polarization.
Why?

III - Precipitation
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Phase spectrum obtained during the experiment
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x Experimental

results .E 3 Dissolution
- o — Adjusted model
1D reactive transport 5 e
=
modeling with CrunchFlow & Calcium concentration
S — measurements from
! water samples

T 14l | | | Precipitation collected at the outlet
We succeed to predict [Ca?*] with _E —— Adjusted model|  of the column.
this 1D approach during both g2 Data
dissolution and precipitation. 1t

1v]
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Time (h)
The adjusted models show that
the porosity change due to
chemical processes on the
sample is small and P, P, P, P,
412 .
o
Dissolution and precipitation S 411l ]
occur in the first centimeter of R
the sample, which generates no 41 : ! | :
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x Experimental

Self potential results

* Evolution of the intrinsic

potential of the electrodes
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Variations begin staggered in time and end simultaneously.
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Self potential results

e Evolution of the intrinsic
potential of the electrodes

riations after the
of a new fluid

* These SP signals come from
an electrochemical coupling
due to ionic concentration
gradients

ref 05 12 19 26

Variations begin staggered in time and end simultaneously.

1 -2 |
Precipitation
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\ Z 5}
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Experiment of in a sand
matrix from Maineult (2004) with SP
monitoring on 4 channels:

e Variations are related to NaCl diffusion

* The solute front speed can be
quantified

temps (jours)
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A Experimental
x results

Experimental setup
improvement

In a new dissolution
experiment, acid injection was
shifted to locate the

between electrodes P,
and P,.

However, the phase spectrum
obtained with SIP remained
flat.

= Dissolution generates no
phase signal

Picture of the
- injection tube
: shifted in the
column filled

Reactive zone
= Injection tube

] with brine

CASE 2

CASE 1

Injection tube
extended in the

Injection tube
connected at the

column entrance column
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drx Conclusions

the self potential method
- No SIP response in dissolution

- Good agreement and complementarity between geoelectrical
methods and geochemical monitoring and modeling

- Successful monitoring of dissolution and precipitation processes WN

- Quantitative interpretation of self potential measure using the junction
potential theory

- New acquisition during precipitation process with a better control of the
injection location
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Thank you for watching.
| look forward for your questions.
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