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We developed a e Considering the heterogeneities of hydraulic and thermal parameters at the urban scale

fluid-flow / thermal- Complex boundary conditions at the top of the model were applied to simulate the interactions
transport FEM with the surface

numerical model

Considering the effects of anthropogenic heat sources (e.g. underground tunnels, shallow
geothermal wells, percentage of soil covered by human-made infrastructures)

Groundwater urban heat island

Positive temperature anomaly in the urban
setting relative to the surrounding rural areas

v Rechérg,;\ ‘ @ Foun?ations ;wage SWuartfsrch;iev: ATMOSPHERE 9 SUBSURFACE
Geothermal | ’/ " (SO" + Groundwater)
wells = ° Tunnels
In order to: o Quantify the heat island effect in the subsurface and assess natural and anthropogenic contribution

o Assess the thermal regime of the shallow aquifers for geothermal planning
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Hydrogeological settings
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Fluvioglacial deposits
separated by low
permeability layers

Three main aquifer
complexes

v

I.  Phreatic aquifer (A) Gravel with a sandy matrix (thickness 20-50 m).
Bottom: clayey silty aquitard (continuous only southward)

Il. Semi-confined aquifer (B) sands and sandy gravels (thickness 50-100 m)
Bottom: clay and silt layers, and locally conglomeratic units.

lll. Deep confined aquifers (C) sandy lenses within clay and silt units
representing the lower Pliocene continental-marine facies
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stream deposits A A

Meandering river
deposits

Marine deposits

* The study area is located in the largest alluvial plain in Italy

* In this study we considered only the 2 shallower aquifers (A — Phreatic and B — Semi-Confined)
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Study area Groundwater temperature monitoring
The Milan Metropolitan Area is one of the most densely populated regions in Italy and Europe
- 6,836 inhabitants/km2 in the city of Milan x15
- 5,351,148 inhabitants in the Metropolitan Area @ 04/2016 - 04/2020
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* Groundwater temperature in the Milan City Area have been monitored since early 2016
* Inthis study i am going to present the groundwater thermal regime of this intensively populated area
* The extent of the urban heat island in the groundwater will be revealed
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Analysis of vertical
profiles
Groundwater
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* By analyzing groundwater temperature data from the vertical logs we can observe how the groundwater temperature changes during the
year and by moving deeper in the aquifer

* Depthis expressed as 0 m, 5 m, 10 m below the groundwater table
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* Temperature cross-section profiles extracted from the temperature maps: we can observe that the heat island intensity in the shallow
aquifer can reach up to 3.5°C during the late fall / winter period (this is the moment of the year where the heat island intensity is higher)

* The heat island is well correlated with the building density (whereas the seasonal fluctuation is correlated with the depth of GW)
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Temperature time-series analysis

0.000316228 - - -~

BB 3160286005 << G EGG G e 25 I

= ;61-53239-06 ............................................. e — Milan - Low Hydrau"c Gradient |- - .- a0 [m].

B 1s-06 & Tunnels [m] Cathedral - 06

Building Density

LLLC O TV L LTRREETRRERTRR R TR |

0 2 4 6 8 10 12 14 16
E 24 1 Ground Surface E 24 Ground Surface E g 3 Ground Surface E 2 Ground Surface E g Ground Surface
o 9 o 9 e 9 8 9 e 9
£ 124 £ 12 £ 12 £ 12 £ 12
& S I —— = O 15— avt . 41" 815
__ 18 __ 18 __ 18] __ 18 __ 18
g) 204 g) 204 g.) 20 g.) 20 g.) 20
@ 19] @ 19] @ 19 @ 19 @ 19
2 18] 2 18] 2 18\-/\/\_/__\/.\ 218 2 18
g 174 g 174 g 17 g 1 e g 17
5 16 %16/_\/_\_/_\_/\ 5 16 5 16 5 16
- - [ [ [
; 15 ; 15 ; 15 ; 15 ; 15
O] 01/01/2017 01/01/2018 01/01/2019 01/01/2020 O] 01/01/2017 01/01/2018 01/01/2019 01/01/2020 O 01/01/2017 01/01/2018 01/01/2019 01/01/2020 O 01/01/2017 01/01/2018 01/01/2019 01/01/2020 O 01/01/2017 01/01/2018 01/01/2019 01/01/2020

* This is the N-S cross section = We can observe the temperature time-series recorded along this profile

* To the north the water table is deep, the mean annual temperature is about 15°C and seasonal fluctuations are very low

* Near the centre the water table is deep but the mean annual temperature is higher (17.5°C or more), seasonal fluctuations low

* To the south the water table is shallower, the mean annual temperature is about 16°C and seasonal fluctuations are very high
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From monitoring to modeling...

Aquifer surfaces

Z

Grain size
distribution
Model size: analysis
20 km x 18 km x 250 m
Number of elements:
6,260,000
Model volume:
3.23E10m3
Element size:

5-200m

De Caro et al., 2020
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3D geostatistics

* Development of a urban-scale fluid-flow/thermal-transport FEM numerical model - Hydraulic and thermal parameters
* The stratigraphic database was used to reconstruct the heterogeneities of hydraulic and thermal properties in the two aquifers analyzed by

the numerical modeling
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Fluid flow and heat transport settings

Top surface Top surface
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Fluid flow Heat transport
— Upstream and downstream hydraulic boundaries (1°* kind-BC) Upstream thermal boundary (15t kind-BC)
¥ Recharge from infiltration on top (2" kind-BC) Heat in-/outflow from the top boundary (3" kind-BC / SoilTemp?)
— Interactions with surface water bodies (3" kind-BC) — Thermal interactions with surface water bodies (3" kind-BC)
® Abstraction of GW from water supply wells (4*" kind-BC) A Abstraction/injection of heat from geothermal wells (4t kind-BC)

A Abstraction/Injection of GW from geothermal wells (4t kind-BC) — Heat In-/out-flow from the tunnel elements (3" kind-BC)
— Impervious elements along the 6 tunnel axis (low k-values)

e List of the fluid-flow and thermal boundary conditions
1 Rock and Kupfersberger, 3D modeling of

groundwater heat transport in the shallow
Westliches Leibnitzer Feld aquifer, Austria (2018)
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Boundary conditions at the top surface

Infiltration Coefficient

Suburban area B 0.0-0.1 BN 05-0.6
B o1-02Mos6-0.7
P o2-03Mo7-08
03-04Mos8-0.9
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High-resolution land use map

Soil Class
I Guiding
I Asphalted
- Railway yard
Parks - Green areas

- Croplands

Recharge from infiltration

Parco Sempione - Cadorna

Area covered by building
Total area of the top element

Heat in-/out-flow was simulated by _—o00-01
comparing 2 approaches “ - Vi > — Y

% Pt TR

. ) 0.5-0.6

*  Cauchy boundary condition at o Eas o demor
the top surface — V< | =i

External temperature and
transfer rate coefficients based
on the land cover

*  Heat sinks/sources managed
by the SoilTemp plug-in (Rock
and Kupfersberger, 2018) —
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&

o
¢
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* Boundary conditions at the top surface
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Calibration of the model

200 m

Litho-zone | Range of k, (m/s) IV:::n/r;)k h c?::‘b/;)k h

The model domain was divided in 4 subdomains by " " " "
grouping the elements on specific k-values intervals @ 9%e-2>K>5%e-4 1.25%e-3 1.0%-3
L 5*e-4 > K > 4*e-5 1.30%e-4 3.2%e-4
Inverse calibration with PEST © 4*e-5 > K > 3*e-6 1 44%e-5 1 1%e-4
(4] 3*e-6> K> 1*e-7 1.20*%e-6 1.0%e-5

* Hydraulic conductivity, porosity, thermal conductivity and heat capacity values were calibrated with a “homogeneous zones” approach




City-scale groundwater flow and heat transport modeling in the Milan Metropolitan Area
Alberto Previati (a.previatil@campus.unimib.it), Giovanni B. Crosta and Jannis Epting

Fluid-flow results after calibration
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Heat transport results after calibration

Simulated - Observed (°C)

Simulated - Observed
avg 2016-2019
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Calibration results
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* Maps showing the spatial distribution at different depths of the simulated mean annual GW temperature and the standard deviation

calculated for one year of simulation

* Graphs on the right show the natural and anthropogenic heat in-/out-flows and the energy stored in the phreatic aquifer
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* Cross-sections showing the simulated temperature
* The heat island effect is observed mainly in the shallow phreatic aquifer
* The moment of the year when the heat island effect is higher is during late fall/early winter
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Considering only the shallow phreatic aquifer (“A”) 0 \225 45

* The thermal potential for the shallow phreatic aquifer (“A”) was derived from model results by means of the heat transport equation

* First, we obtained the heat exchange rate by combining the advective and conductive heat-transport phenomenon

* Then, by multiplying the HER by the allowable temperature drop we obtained the amount of energy that could be exchanged by a m3 of aquifer
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Conclusions

In this study we developed a fluid-flow/thermal-transport FEM numerical model for the Milan Metropolitan Area

Considering
* The heterogeneity of hydraulic and thermal parameters at the urban scale
* Complex boundary conditions at the top of the model were applied to simulate the interaction with the surface

* The effects of anthropogenic heat sources (e.g. underground tunnels, shallow geothermal wells, percentage of soil
covered by human-made infrastructures)

By analyzing monitoring data and modeling results representing the present-day thermal status of the sallow aquifers we were able to:
v" Quantify the heat island effect in the subsurface and assess natural and anthropogenic contribution

v' Assess the thermal regime of the shallow aquifers for geothermal planning

o Development of future scenarios under climate change, demographic growth and land use assumptions

We think that this approach can be adapted at different scales and for many cities worldwide
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Thank you for your attention!
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