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be used as an estimate of the centennial-scale temperature legacy of
these emissions. As a result, our estimates of CCR can be inverted to
estimate the total allowable anthropogenic carbon emissions per
degree of long-term temperature change.

From our model-based estimate of CCR, we estimate allowable
emissions of 1.25 Tt C (range, 0.95–2 Tt C) for 2 uC warming relative
to pre-industrial temperature; our observationally based best estimate
of allowable emissions for 2 uC of warming is 1.4 Tt C (5–95% con-
fidence interval, 1.0 to 1.9 Tt C). Given total CO2 emissions until now
of approximately 0.5 Tt C from fossil fuels and land-use change14,15,
this implies that total future carbon emissions consistent with 2 uC of
warming must be restricted to a best estimate of about 0.8 Tt C
(0.7 Tt C based on the model ensemble mean; 0.9 Tt C based on obser-
vational constraints).

We emphasize, however, that the calculated uncertainty on this
number is quite large (0.4 to 1.5 Tt C). Furthermore, we are unable to
exclude the possibility of higher values of CCR (and consequently
lower values of allowable emissions), owing particularly to poorly

quantified uncertainties in historical land-use change emissions and
structural uncertainties in the simulated sulphate aerosol response.
For example, the allowable emissions for a particular warming
target calculated by ref. 5 were lower, because they used a higher
observational estimate of CO2-attributable warming as well as a
climate–carbon model which simulated non-negligible zero emis-
sions commitment under conditions of high climate sensitivity.
We note also that our analysis of allowable emissions applies specif-
ically to CO2-induced warming, and does not account for the effects
of other greenhouse gases or aerosols.

The CCR is a simple, yet robust representation of the global tem-
perature response to anthropogenic CO2 emissions, and as such is
directly relevant to current policy negotiations surrounding inter-
national climate mitigation efforts. The European Union has proposed
restricting global warming to less than 2 uC above pre-industrial tem-
peratures16; however, large uncertainty in equilibrium climate sensi-
tivity17 prevents confident estimates of the CO2 stabilization level
required to avoid 2 uC warming, and climate sensitivity alone provides
no policy-useful information about the allowable CO2 emissions for a
given stabilization level. The CCR represents a synthesis of previous
efforts to quantify the temperature response to anthropogenic CO2

emissions by aggregating the uncertainties associated with climate
sensitivity, carbon sinks and climate–carbon feedbacks into a single
well-constrained metric of climate change that is related directly to
cumulative carbon emissions.

METHODS SUMMARY
For the idealized model experiments (1% per year CO2 increase; doubled/quad-
rupled CO2) we used the UVic ESCM version 2.8 (refs 9, 18–20). The UVic
ESCM is a computationally efficient coupled climate–carbon model, with inter-
active representations of three-dimensional ocean circulation, atmospheric
energy and moisture balances, sea ice dynamics and thermodynamics, dynamic
vegetation and the global carbon cycle (including land and both inorganic and
organic ocean carbon). Version 2.7 of the UVic ESCM was one of the 11 par-
ticipating models in C4MIP11, in which models were driven by a common CO2

emissions scenario and carbon sinks and atmospheric CO2 concentrations were
calculated interactively until the year 2100. From the C4MIP simulations, we
estimated CCR using globally averaged temperature change and accumulated
carbon emissions at the year of CO2 doubling in each simulation.

Our observational estimate of CCR was derived using estimates of CO2-attri-
butable warming and cumulative CO2 emissions for each decade of the twentieth
century relative to 1900–09. We estimated CO2-attributable warming using an
estimate of greenhouse-gas-attributable warming12, scaled by the ratio of CO2 to
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Figure 4 | Observational estimates of CCR. CCR was estimated for each
decade of the twentieth century after 1910 by scaling an observationally
constrained estimate of greenhouse-gas-attributable warming relative to
1900–09 by the ratio of CO2 forcing to total greenhouse gas forcing, and
dividing by cumulative anthropogenic carbon emissions over the same
period. This observationally constrained estimate of CCR is both stable in
time and consistent with the estimates derived from model simulations.
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Figure 3 | CCR estimated from the C4MIP simulations11. a, Decadal-average
temperature change plotted as a function of cumulative carbon emissions,
showing a near-linear relationship for both individual models (coloured
lines) and the ensemble mean (black line). b, Temperature change per
cumulative carbon emitted for each decade from 1900 to 2100 relative to the
first decade of each model simulation. Over most of the twenty-first century
portion of the simulations, CCR values in each model are remarkably
constant in time.
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be used as an estimate of the centennial-scale temperature legacy of
these emissions. As a result, our estimates of CCR can be inverted to
estimate the total allowable anthropogenic carbon emissions per
degree of long-term temperature change.

From our model-based estimate of CCR, we estimate allowable
emissions of 1.25 Tt C (range, 0.95–2 Tt C) for 2 uC warming relative
to pre-industrial temperature; our observationally based best estimate
of allowable emissions for 2 uC of warming is 1.4 Tt C (5–95% con-
fidence interval, 1.0 to 1.9 Tt C). Given total CO2 emissions until now
of approximately 0.5 Tt C from fossil fuels and land-use change14,15,
this implies that total future carbon emissions consistent with 2 uC of
warming must be restricted to a best estimate of about 0.8 Tt C
(0.7 Tt C based on the model ensemble mean; 0.9 Tt C based on obser-
vational constraints).

We emphasize, however, that the calculated uncertainty on this
number is quite large (0.4 to 1.5 Tt C). Furthermore, we are unable to
exclude the possibility of higher values of CCR (and consequently
lower values of allowable emissions), owing particularly to poorly

quantified uncertainties in historical land-use change emissions and
structural uncertainties in the simulated sulphate aerosol response.
For example, the allowable emissions for a particular warming
target calculated by ref. 5 were lower, because they used a higher
observational estimate of CO2-attributable warming as well as a
climate–carbon model which simulated non-negligible zero emis-
sions commitment under conditions of high climate sensitivity.
We note also that our analysis of allowable emissions applies specif-
ically to CO2-induced warming, and does not account for the effects
of other greenhouse gases or aerosols.

The CCR is a simple, yet robust representation of the global tem-
perature response to anthropogenic CO2 emissions, and as such is
directly relevant to current policy negotiations surrounding inter-
national climate mitigation efforts. The European Union has proposed
restricting global warming to less than 2 uC above pre-industrial tem-
peratures16; however, large uncertainty in equilibrium climate sensi-
tivity17 prevents confident estimates of the CO2 stabilization level
required to avoid 2 uC warming, and climate sensitivity alone provides
no policy-useful information about the allowable CO2 emissions for a
given stabilization level. The CCR represents a synthesis of previous
efforts to quantify the temperature response to anthropogenic CO2

emissions by aggregating the uncertainties associated with climate
sensitivity, carbon sinks and climate–carbon feedbacks into a single
well-constrained metric of climate change that is related directly to
cumulative carbon emissions.

METHODS SUMMARY
For the idealized model experiments (1% per year CO2 increase; doubled/quad-
rupled CO2) we used the UVic ESCM version 2.8 (refs 9, 18–20). The UVic
ESCM is a computationally efficient coupled climate–carbon model, with inter-
active representations of three-dimensional ocean circulation, atmospheric
energy and moisture balances, sea ice dynamics and thermodynamics, dynamic
vegetation and the global carbon cycle (including land and both inorganic and
organic ocean carbon). Version 2.7 of the UVic ESCM was one of the 11 par-
ticipating models in C4MIP11, in which models were driven by a common CO2

emissions scenario and carbon sinks and atmospheric CO2 concentrations were
calculated interactively until the year 2100. From the C4MIP simulations, we
estimated CCR using globally averaged temperature change and accumulated
carbon emissions at the year of CO2 doubling in each simulation.

Our observational estimate of CCR was derived using estimates of CO2-attri-
butable warming and cumulative CO2 emissions for each decade of the twentieth
century relative to 1900–09. We estimated CO2-attributable warming using an
estimate of greenhouse-gas-attributable warming12, scaled by the ratio of CO2 to
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Figure 4 | Observational estimates of CCR. CCR was estimated for each
decade of the twentieth century after 1910 by scaling an observationally
constrained estimate of greenhouse-gas-attributable warming relative to
1900–09 by the ratio of CO2 forcing to total greenhouse gas forcing, and
dividing by cumulative anthropogenic carbon emissions over the same
period. This observationally constrained estimate of CCR is both stable in
time and consistent with the estimates derived from model simulations.
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Figure 3 | CCR estimated from the C4MIP simulations11. a, Decadal-average
temperature change plotted as a function of cumulative carbon emissions,
showing a near-linear relationship for both individual models (coloured
lines) and the ensemble mean (black line). b, Temperature change per
cumulative carbon emitted for each decade from 1900 to 2100 relative to the
first decade of each model simulation. Over most of the twenty-first century
portion of the simulations, CCR values in each model are remarkably
constant in time.
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be used as an estimate of the centennial-scale temperature legacy of
these emissions. As a result, our estimates of CCR can be inverted to
estimate the total allowable anthropogenic carbon emissions per
degree of long-term temperature change.

From our model-based estimate of CCR, we estimate allowable
emissions of 1.25 Tt C (range, 0.95–2 Tt C) for 2 uC warming relative
to pre-industrial temperature; our observationally based best estimate
of allowable emissions for 2 uC of warming is 1.4 Tt C (5–95% con-
fidence interval, 1.0 to 1.9 Tt C). Given total CO2 emissions until now
of approximately 0.5 Tt C from fossil fuels and land-use change14,15,
this implies that total future carbon emissions consistent with 2 uC of
warming must be restricted to a best estimate of about 0.8 Tt C
(0.7 Tt C based on the model ensemble mean; 0.9 Tt C based on obser-
vational constraints).

We emphasize, however, that the calculated uncertainty on this
number is quite large (0.4 to 1.5 Tt C). Furthermore, we are unable to
exclude the possibility of higher values of CCR (and consequently
lower values of allowable emissions), owing particularly to poorly

quantified uncertainties in historical land-use change emissions and
structural uncertainties in the simulated sulphate aerosol response.
For example, the allowable emissions for a particular warming
target calculated by ref. 5 were lower, because they used a higher
observational estimate of CO2-attributable warming as well as a
climate–carbon model which simulated non-negligible zero emis-
sions commitment under conditions of high climate sensitivity.
We note also that our analysis of allowable emissions applies specif-
ically to CO2-induced warming, and does not account for the effects
of other greenhouse gases or aerosols.

The CCR is a simple, yet robust representation of the global tem-
perature response to anthropogenic CO2 emissions, and as such is
directly relevant to current policy negotiations surrounding inter-
national climate mitigation efforts. The European Union has proposed
restricting global warming to less than 2 uC above pre-industrial tem-
peratures16; however, large uncertainty in equilibrium climate sensi-
tivity17 prevents confident estimates of the CO2 stabilization level
required to avoid 2 uC warming, and climate sensitivity alone provides
no policy-useful information about the allowable CO2 emissions for a
given stabilization level. The CCR represents a synthesis of previous
efforts to quantify the temperature response to anthropogenic CO2

emissions by aggregating the uncertainties associated with climate
sensitivity, carbon sinks and climate–carbon feedbacks into a single
well-constrained metric of climate change that is related directly to
cumulative carbon emissions.

METHODS SUMMARY
For the idealized model experiments (1% per year CO2 increase; doubled/quad-
rupled CO2) we used the UVic ESCM version 2.8 (refs 9, 18–20). The UVic
ESCM is a computationally efficient coupled climate–carbon model, with inter-
active representations of three-dimensional ocean circulation, atmospheric
energy and moisture balances, sea ice dynamics and thermodynamics, dynamic
vegetation and the global carbon cycle (including land and both inorganic and
organic ocean carbon). Version 2.7 of the UVic ESCM was one of the 11 par-
ticipating models in C4MIP11, in which models were driven by a common CO2

emissions scenario and carbon sinks and atmospheric CO2 concentrations were
calculated interactively until the year 2100. From the C4MIP simulations, we
estimated CCR using globally averaged temperature change and accumulated
carbon emissions at the year of CO2 doubling in each simulation.

Our observational estimate of CCR was derived using estimates of CO2-attri-
butable warming and cumulative CO2 emissions for each decade of the twentieth
century relative to 1900–09. We estimated CO2-attributable warming using an
estimate of greenhouse-gas-attributable warming12, scaled by the ratio of CO2 to
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Figure 4 | Observational estimates of CCR. CCR was estimated for each
decade of the twentieth century after 1910 by scaling an observationally
constrained estimate of greenhouse-gas-attributable warming relative to
1900–09 by the ratio of CO2 forcing to total greenhouse gas forcing, and
dividing by cumulative anthropogenic carbon emissions over the same
period. This observationally constrained estimate of CCR is both stable in
time and consistent with the estimates derived from model simulations.
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Figure 3 | CCR estimated from the C4MIP simulations11. a, Decadal-average
temperature change plotted as a function of cumulative carbon emissions,
showing a near-linear relationship for both individual models (coloured
lines) and the ensemble mean (black line). b, Temperature change per
cumulative carbon emitted for each decade from 1900 to 2100 relative to the
first decade of each model simulation. Over most of the twenty-first century
portion of the simulations, CCR values in each model are remarkably
constant in time.
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be used as an estimate of the centennial-scale temperature legacy of
these emissions. As a result, our estimates of CCR can be inverted to
estimate the total allowable anthropogenic carbon emissions per
degree of long-term temperature change.

From our model-based estimate of CCR, we estimate allowable
emissions of 1.25 Tt C (range, 0.95–2 Tt C) for 2 uC warming relative
to pre-industrial temperature; our observationally based best estimate
of allowable emissions for 2 uC of warming is 1.4 Tt C (5–95% con-
fidence interval, 1.0 to 1.9 Tt C). Given total CO2 emissions until now
of approximately 0.5 Tt C from fossil fuels and land-use change14,15,
this implies that total future carbon emissions consistent with 2 uC of
warming must be restricted to a best estimate of about 0.8 Tt C
(0.7 Tt C based on the model ensemble mean; 0.9 Tt C based on obser-
vational constraints).

We emphasize, however, that the calculated uncertainty on this
number is quite large (0.4 to 1.5 Tt C). Furthermore, we are unable to
exclude the possibility of higher values of CCR (and consequently
lower values of allowable emissions), owing particularly to poorly

quantified uncertainties in historical land-use change emissions and
structural uncertainties in the simulated sulphate aerosol response.
For example, the allowable emissions for a particular warming
target calculated by ref. 5 were lower, because they used a higher
observational estimate of CO2-attributable warming as well as a
climate–carbon model which simulated non-negligible zero emis-
sions commitment under conditions of high climate sensitivity.
We note also that our analysis of allowable emissions applies specif-
ically to CO2-induced warming, and does not account for the effects
of other greenhouse gases or aerosols.

The CCR is a simple, yet robust representation of the global tem-
perature response to anthropogenic CO2 emissions, and as such is
directly relevant to current policy negotiations surrounding inter-
national climate mitigation efforts. The European Union has proposed
restricting global warming to less than 2 uC above pre-industrial tem-
peratures16; however, large uncertainty in equilibrium climate sensi-
tivity17 prevents confident estimates of the CO2 stabilization level
required to avoid 2 uC warming, and climate sensitivity alone provides
no policy-useful information about the allowable CO2 emissions for a
given stabilization level. The CCR represents a synthesis of previous
efforts to quantify the temperature response to anthropogenic CO2

emissions by aggregating the uncertainties associated with climate
sensitivity, carbon sinks and climate–carbon feedbacks into a single
well-constrained metric of climate change that is related directly to
cumulative carbon emissions.

METHODS SUMMARY
For the idealized model experiments (1% per year CO2 increase; doubled/quad-
rupled CO2) we used the UVic ESCM version 2.8 (refs 9, 18–20). The UVic
ESCM is a computationally efficient coupled climate–carbon model, with inter-
active representations of three-dimensional ocean circulation, atmospheric
energy and moisture balances, sea ice dynamics and thermodynamics, dynamic
vegetation and the global carbon cycle (including land and both inorganic and
organic ocean carbon). Version 2.7 of the UVic ESCM was one of the 11 par-
ticipating models in C4MIP11, in which models were driven by a common CO2

emissions scenario and carbon sinks and atmospheric CO2 concentrations were
calculated interactively until the year 2100. From the C4MIP simulations, we
estimated CCR using globally averaged temperature change and accumulated
carbon emissions at the year of CO2 doubling in each simulation.

Our observational estimate of CCR was derived using estimates of CO2-attri-
butable warming and cumulative CO2 emissions for each decade of the twentieth
century relative to 1900–09. We estimated CO2-attributable warming using an
estimate of greenhouse-gas-attributable warming12, scaled by the ratio of CO2 to
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Figure 4 | Observational estimates of CCR. CCR was estimated for each
decade of the twentieth century after 1910 by scaling an observationally
constrained estimate of greenhouse-gas-attributable warming relative to
1900–09 by the ratio of CO2 forcing to total greenhouse gas forcing, and
dividing by cumulative anthropogenic carbon emissions over the same
period. This observationally constrained estimate of CCR is both stable in
time and consistent with the estimates derived from model simulations.
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Figure 3 | CCR estimated from the C4MIP simulations11. a, Decadal-average
temperature change plotted as a function of cumulative carbon emissions,
showing a near-linear relationship for both individual models (coloured
lines) and the ensemble mean (black line). b, Temperature change per
cumulative carbon emitted for each decade from 1900 to 2100 relative to the
first decade of each model simulation. Over most of the twenty-first century
portion of the simulations, CCR values in each model are remarkably
constant in time.
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be used as an estimate of the centennial-scale temperature legacy of
these emissions. As a result, our estimates of CCR can be inverted to
estimate the total allowable anthropogenic carbon emissions per
degree of long-term temperature change.

From our model-based estimate of CCR, we estimate allowable
emissions of 1.25 Tt C (range, 0.95–2 Tt C) for 2 uC warming relative
to pre-industrial temperature; our observationally based best estimate
of allowable emissions for 2 uC of warming is 1.4 Tt C (5–95% con-
fidence interval, 1.0 to 1.9 Tt C). Given total CO2 emissions until now
of approximately 0.5 Tt C from fossil fuels and land-use change14,15,
this implies that total future carbon emissions consistent with 2 uC of
warming must be restricted to a best estimate of about 0.8 Tt C
(0.7 Tt C based on the model ensemble mean; 0.9 Tt C based on obser-
vational constraints).

We emphasize, however, that the calculated uncertainty on this
number is quite large (0.4 to 1.5 Tt C). Furthermore, we are unable to
exclude the possibility of higher values of CCR (and consequently
lower values of allowable emissions), owing particularly to poorly

quantified uncertainties in historical land-use change emissions and
structural uncertainties in the simulated sulphate aerosol response.
For example, the allowable emissions for a particular warming
target calculated by ref. 5 were lower, because they used a higher
observational estimate of CO2-attributable warming as well as a
climate–carbon model which simulated non-negligible zero emis-
sions commitment under conditions of high climate sensitivity.
We note also that our analysis of allowable emissions applies specif-
ically to CO2-induced warming, and does not account for the effects
of other greenhouse gases or aerosols.

The CCR is a simple, yet robust representation of the global tem-
perature response to anthropogenic CO2 emissions, and as such is
directly relevant to current policy negotiations surrounding inter-
national climate mitigation efforts. The European Union has proposed
restricting global warming to less than 2 uC above pre-industrial tem-
peratures16; however, large uncertainty in equilibrium climate sensi-
tivity17 prevents confident estimates of the CO2 stabilization level
required to avoid 2 uC warming, and climate sensitivity alone provides
no policy-useful information about the allowable CO2 emissions for a
given stabilization level. The CCR represents a synthesis of previous
efforts to quantify the temperature response to anthropogenic CO2

emissions by aggregating the uncertainties associated with climate
sensitivity, carbon sinks and climate–carbon feedbacks into a single
well-constrained metric of climate change that is related directly to
cumulative carbon emissions.

METHODS SUMMARY
For the idealized model experiments (1% per year CO2 increase; doubled/quad-
rupled CO2) we used the UVic ESCM version 2.8 (refs 9, 18–20). The UVic
ESCM is a computationally efficient coupled climate–carbon model, with inter-
active representations of three-dimensional ocean circulation, atmospheric
energy and moisture balances, sea ice dynamics and thermodynamics, dynamic
vegetation and the global carbon cycle (including land and both inorganic and
organic ocean carbon). Version 2.7 of the UVic ESCM was one of the 11 par-
ticipating models in C4MIP11, in which models were driven by a common CO2

emissions scenario and carbon sinks and atmospheric CO2 concentrations were
calculated interactively until the year 2100. From the C4MIP simulations, we
estimated CCR using globally averaged temperature change and accumulated
carbon emissions at the year of CO2 doubling in each simulation.

Our observational estimate of CCR was derived using estimates of CO2-attri-
butable warming and cumulative CO2 emissions for each decade of the twentieth
century relative to 1900–09. We estimated CO2-attributable warming using an
estimate of greenhouse-gas-attributable warming12, scaled by the ratio of CO2 to
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Figure 4 | Observational estimates of CCR. CCR was estimated for each
decade of the twentieth century after 1910 by scaling an observationally
constrained estimate of greenhouse-gas-attributable warming relative to
1900–09 by the ratio of CO2 forcing to total greenhouse gas forcing, and
dividing by cumulative anthropogenic carbon emissions over the same
period. This observationally constrained estimate of CCR is both stable in
time and consistent with the estimates derived from model simulations.
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Figure 3 | CCR estimated from the C4MIP simulations11. a, Decadal-average
temperature change plotted as a function of cumulative carbon emissions,
showing a near-linear relationship for both individual models (coloured
lines) and the ensemble mean (black line). b, Temperature change per
cumulative carbon emitted for each decade from 1900 to 2100 relative to the
first decade of each model simulation. Over most of the twenty-first century
portion of the simulations, CCR values in each model are remarkably
constant in time.
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Matthews, et al. "The proportionality of global warming to cumulative carbon emissions" Nature (2009).
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• A lower warming target, or a higher likelihood of remaining below a specific warming target, will require lower cumulative 
CO2  emissions. Accounting for warming effects of increases in non-CO2 greenhouse gases, reductions in aerosols, or the 
release of greenhouse gases from permafrost will also lower the cumulative CO2 emissions for a specific warming target 
(see Figure SPM.10). {12.5}

• A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to 
millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. 
Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation 
of net anthropogenic CO2 emissions. Due to the long time scales of heat transfer from the ocean surface to depth, ocean 
warming will continue for centuries. Depending on the scenario, about 15 to 40% of emitted CO2 will remain in the 
atmosphere longer than 1,000 years. {Box 6.1, 12.4, 12.5} 

• It is virtually certain that global mean sea level rise will continue beyond 2100, with sea level rise due to thermal 
expansion to continue for many centuries. The few available model results that go beyond 2100 indicate global mean 
sea level rise above the pre-industrial level by 2300 to be less than 1 m for a radiative forcing that corresponds to CO2 
concentrations that peak and decline and remain below 500 ppm, as in the scenario RCP2.6. For a radiative forcing that 
corresponds to a CO2 concentration that is above 700 ppm but below 1500 ppm, as in the scenario RCP8.5, the projected 
rise is 1 m to more than 3 m (medium confidence). {13.5}

Figure SPM.10 |  Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-
model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some 
decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated 
in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models 
in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 simulations), is given by 
the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those 
driven by RCPs, which include additional non-CO2 forcings.  Temperature values are given relative to the 1861−1880 base period, emissions relative to 
1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; 
TS TFE.8, Figure 1}
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C. J. Smith et al.: FAIR: a simple emissions-based impulse response and carbon cycle model 2287

5–95 % CI from FAIR

Figure 5. Comparison of the radiative forcing from RCP2.6, RCP4.5, RCP6.0 and RCP8.5 derived from 13 separate components (a–m),
along with the total radiative forcing (n). ERF from FAIR (solid lines) with 5–95 % confidence intervals (shading), RF from MAGICC6
(dashed lines; Meinshausen et al., 2011b) and RF from AR5 Annex II for 1850–2011 (green solid lines, IPCC, 2013).

www.geosci-model-dev.net/11/2273/2018/ Geosci. Model Dev., 11, 2273–2297, 2018
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(dashed lines; Meinshausen et al., 2011b) and RF from AR5 Annex II for 1850–2011 (green solid lines, IPCC, 2013).
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How important is the contribution of non-CO2 climate forcers?

source:  
Smith, et al. "FAIR: a simple 
emissions-based impulse response 
and carbon cycle model" GMD (2018).
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What does that mean for future scenarios?  
2. Can we use the effective TCRE to calculate  

future carbon budgets?
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Can we use the effective TCRE to calculate future carbon budgets?

*Global Carbon Project: 1870-2017 FF+LUC emissions: 625 PgC

Mengis et al. 2018 
estimate for 1.5°C 
FF+LUC budget:  

700 (640,760) PgC 
= 75 (15,135) PgC*

Non-CO2 scenario uncertainty
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2. Can we use the effective TCRE to calculate  
future carbon budgets?

No, because we cannot assume proportionality  
between future CO2 and non-CO2 forcing!
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But !: If we want to know, how much fossil fuels  
we can still burn, we need to explicitly account  

for the non-CO2 forcing
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1. How important is the contribution of non-CO2 climate 
forcers?

Important, it can be in the order of magnitude of  
CO2! Different anthropogenic activities have  
different co-emissions: LUC and agriculture  
(fossil fuels) currently have a warming  
(cooling) non-CO2 effect.
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2.2.2.2 CO2 and non-CO2 contributions to the remaining 
carbon budget

A remaining carbon budget can be estimated from calculating the 
amount of CO2 emissions consistent (given a certain value of TCRE) 
with an allowable additional amount of warming. Here, the allowable 
warming is the 1.5°C warming threshold minus the current warming 
taken as the 2006–2015 average, with a further amount removed to 
account for the estimated non-CO2 temperature contribution to the 
remaining warming (Peters, 2016; Rogelj et al., 2016b). This assessment 
uses the TCRE range from AR5 WGI (Collins et al., 2013) supported 
by estimates of non-CO2 contributions that are based on published 
methods and integrated pathways (Friedlingstein et al., 2014a; Allen et 
al., 2016, 2018; Peters, 2016; Smith et al., 2018). Table 2.2 and Figure 
2.3 show the assessed remaining carbon budgets and key uncertainties 
for a set of additional warming levels relative to the 2006–2015 period 
(see Supplementary Material 2.SM.1.1.2 for details). With an assessed 
historical warming of 0.87°C ± 0.12°C from 1850–1900 to 2006–2015 
(Chapter 1, Section 1.2.1), 0.63°C of additional warming would be 

Figure 2.3 |  Temperature changes from 1850–1900 versus cumulative CO2 emissions since 1st January 1876. Solid lines with dots reproduce the globally 
averaged near-surface air temperature response to cumulative CO2 emissions plus non-CO2 forcers as assessed in Figure SPM10 of WGI AR5, except that points marked with 
years relate to a particular year, unlike in WGI AR5 Figure SPM.10, where each point relates to the mean over the previous decade. The AR5 data was derived from 15 Earth 
system models and 5 Earth system models of Intermediate Complexity for the historic observations (black) and RCP8.5 scenario (red), and the red shaded plume shows the 
range across the models as presented in the AR5. The purple shaded plume and the line are indicative of the temperature response to cumulative CO2 emissions and non-CO2 
warming adopted in this report. The non-CO2 warming contribution is averaged from the MAGICC and FAIR models, and the purple shaded range assumes the AR5 WGI TCRE 
distribution (Supplementary Material 2.SM.1.1.2). The 2010 observation of surface temperature change (0.97°C based on 2006–2015 mean compared to 1850–1900, Chapter 
1, Section 1.2.1) and cumulative carbon dioxide emissions from 1876 to the end of 2010 of 1,930 GtCO2 (Le Quéré et al., 2018) is shown as a filled purple diamond. The value 
for 2017 based on the latest cumulative carbon emissions up to the end of 2017 of 2,220 GtCO2 (Version 1.3 accessed 22 May 2018) and a surface temperature anomaly of 
1.1°C based on an assumed temperature increase of 0.2°C per decade is shown as a hollow purple diamond. The thin blue line shows annual observations, with CO2 emissions 
from Le Quéré et al. (2018) and estimated globally averaged near-surface temperature from scaling the incomplete coverage and blended HadCRUT4 dataset in Chapter 1. The 
thin black line shows the CMIP5 multimodel mean estimate with CO2 emissions also from (Le Quéré et al., 2018). The thin black line shows the GMST historic temperature trends 
from Chapter 1, which give lower temperature changes up to 2006–2015 of 0.87°C and would lead to a larger remaining carbon budget. The dotted black lines illustrate the 
remaining carbon budget estimates for 1.5°C given in Table 2.2. Note these remaining budgets exclude possible Earth system feedbacks that could reduce the budget, such as 
CO2 and CH4 release from permafrost thawing and tropical wetlands (see Section 2.2.2.2).

approximately consistent with a global mean temperature increase 
of 1.5°C relative to pre-industrial levels. For this level of additional 
warming, remaining carbon budgets have been estimated (Table 2.2, 
Supplementary Material 2.SM.1.1.2). 

The remaining carbon budget calculation presented in the Table 
2.2 and illustrated in Figure 2.3 does not consider additional Earth 
system feedbacks such as permafrost thawing. These are uncertain 
but estimated to reduce the remaining carbon budget by an order of 
magnitude of about 100 GtCO2 and more thereafter. Accounting for 
such feedbacks would make the carbon budget more applicable for 
2100 temperature targets, but would also increase uncertainty (Table 
2.2 and see below). Excluding such feedbacks, the assessed range for 
the remaining carbon budget is estimated to be 840, 580, and 420 
GtCO2 for the 33rd, 50th and, 67th percentile of TCRE, respectively, 
with a median non-CO2 warming contribution and starting from 1 
January 2018 onward. Consistent with the approach used in the 
IPCC Fifth Assessment Report (IPCC, 2013b), the latter estimates 
use global near-surface air temperatures both over the ocean and 

IPCC SR1.5, Fig 2.3
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Important, it can be in the order of magnitude of  
CO2! Different anthropogenic activities have  
different co-emissions: LUC and agriculture  
(fossil fuels) currently have a warming  
(cooling) non-CO2 effect.

2. Can we use the effective TCRE  
to calculate future carbon  
budgets?

No, not without accounting for the  
effect of non-CO2 climate forcers,  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forcers with the TCRFE.
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the presented results are based on: 
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I am happy to answer questions !
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