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Abstract

The dynamic kurtosis (i.e., produced by the free wave component) is shown to
contribute essentially to the abnormally large values of the full kurtosis of the surface
displacement, according to the direct numerical simulations of realistic directional sea
waves within the HOSM framework. In this situation the free wave stochastic
dynamics is strongly non-Gaussian, and the kinetic approach is inapplicable. Traces of
coherent wave patterns are found in the Fourier transform of the directional irregular
sea waves. They strongly violate the classic dispersion relation and hence lead to a
greater spread of the actual wave frequencies for given wavenumbers.
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Routine forecast of the BFI maps

[De Ponce & Guedes Soares, 2014]

Large BFI corresponds to high probability of large waves

BFI grows

Rogue wave problem
Wave height probability and the Benjamin – Feir instability

[Kharif, Pelinovsky, Slunyaev, 2009] 3



Rogue wave problem
Wave height probability and the Benjamin – Feir instability
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Numerical simulations 
of irregular sea waves



Nonlinear simple deep-water wave
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Narrow-banded weakly nonlinear waves

Fourth statistical moment, the kurtosis
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The Gaussian statistics

[Mori & Janssen, JPO2016]

Bound wave contribution
(wave unsinusoidality)

Dynamic part: Benjamin-Feir
instability (quasi-resonant
interactions) [Onorato et al, 2001]

Exceedance probability for wave heights H
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The probability of large waves 
increases when the kurtosis 
surpasses the value of three

Large kurtosis is a signature 
of dangerous wave conditions

May be O(1)
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Statistical moments for the surface displacement
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Dynamical spectral theory

[Zakharov, 1968; Krasitskii, 1994; Janssen, 2008]
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Non-resonant terms are eliminated with the help of the canonical transformation 
of variables  ( (η, Φ) → a(k, t) → b(k, t) ). 
Higher than 4-wave resonances are not resolved (wave slopes should be mild).

Dynamic kurtosis (resonant and near-resonant interactions)

Bound wave kurtosis (non-resonant interactions)

Hamiltonian weakly nonlinear Zakharov’s equation
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[Hasselmann, JFM1962]
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effects of coherent 

wave dynamics

Phase-averaged equations
Kinetic spectral theory 
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Kinetic spectral theory 
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Phase-averaged equations
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Evolution of the total kurtosis
Wave evolution within different frameworks

The curves differ noticeably.
The reason is unclear
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The method of wave decomposition 
into free wave and bound wave constituents



Direct numerical sims + Triple Fourier transform
Deep-water gravity waves 
obeying the JONSWAP 
spectrum are simulated by 
the High Order Spectral 
Method (HOSM, the 
potential Euler equations
with truncated order of 
nonlinearity).

No winds. 
Almost no dissipation.

A sequence of snapshots 
of the water surface 
represents a real-valued 
field in a space-time 
domain, periodic along 
the two horizontal axes.
50 × 50 dominant wave 
lengths × 25 periods. 13



JONSWAP, Hs = 7 m, γ = 3, Θ = 62°

Fourier domain
We plot contours for the normalized Fourier amplitudes by different colors
(0 … –10 Db)

kxky
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JONSWAP, Hs = 7 m, γ = 3, Θ = 62°

Fourier domain
We plot contours for the normalized Fourier amplitudes by different colors
(0 … –20 Db)

kxky

ω

15



JONSWAP, Hs = 7 m, γ = 3, Θ = 62°

Fourier domain
We plot contours for the normalized Fourier amplitudes by different colors
(0 … –30 Db)
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JONSWAP, Hs = 7 m, γ = 3, Θ = 62°

Fourier domain
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Fourier domain

ω2

Weakly nonlinear narrow-banded theory
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Nonlinear harmonics:

n = 2, 3, … – order of nonlinearity
n = 1/2 – the difference harmonic

gknn
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• Spectral filters can select wanted nonlinear harmonics

• Actual nonlinear harmonics approximately  
follow the narrow-band theory

|k|
• The free wave component is reconstructed via inverse triple Fourier transform18



Total and ‘dynamic’ statistical moments

dynamic skewness

dynamic kurtosis

total skewness

total kurtosis

Class 1  (Hs=7m, γ=3, Θ=62°)

Two classes of sea states
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dynamic skewness

dynamic kurtosis

total skewness

total kurtosis

Class 1  (Hs=7m, γ=3, Θ=62°)

Class 2 (Hs=6m, γ=6, Θ=12°)

Two classes of sea states
Total and ‘dynamic’ statistical moments

dynamic skewness

dynamic kurtosis

total skewness

total kurtosis
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Evidence of coherent wave patterns
Wavenumber-frequency 

Fourier amplitudes along 
the wave direction θ ≈ 14°

Manifestation of coherent 
wave patterns, which 

violate the dispersion law

Wavenumber-frequency 
Fourier amplitudes 

integrated along all wave 
directions

The coherent patterns 
lead to the spread of 
energy in the Fourier 

domain
21



The evidence of generation of nonlinear coherent patterns in directional 
irregular sea surface waves is presented

Conclusions

The method to calculate the free wave component from the wave data 
is suggested

The strongly non-Gaussian dynamics of the free wave component 
is shown to occur under realistic sea conditions 

It occurs under the conditions favorable for the Benjamin – Feir instability
(intense waves with narrow spectrum)

It cannot be simulated by phase-averaging models

The new effect leading to the spread of the irregular wave dispersion is 
shown
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