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It was shown experimentally in Trulsen et al. (2012) that irregular water waves propagating over a slope
may have a local maximum of kurtosis and skewness in surface elevation near the shallower side of the
slope. Later on, Raustøl (2014) did laboratory experiments for irregular water waves propagating over a
shoal and found the surface elevation could have a local maximum of kurtosis and skewness on top of the
shoal, and a local minimum of skewness after the shoal for sufficiently shallow water. Numerical results
by Sergeeva et al. (2011), Zeng & Trulsen (2012), Gramstad et al. (2013) and Viotti & Dias (2014)
support the experimental results mentioned above. Just recently, Jorde (2018) did new experiment with
the same shoal as in Raustøl (2014) but with additional measurement of the interior horizontal velocity.
The experimental results from Raustøl (2014) and Jorde (2018) were reported in Trulsen et al. (2020)
and it was found the evolution of skewness for surface elevation and horizontal velocity have the same
behaviour but the kurtosis of horizontal velocity has local maximum in downslope area which is different
with the kurtosis of surface elevation.

In present work, we utilize numerical simulation to study the effects of incoming significant wave height,
peak wave frequency on evolution of wave statistics for both surface elevation and velocity field with
more general bathymetry. Numerical simulations are based on High Order Spectral Method (HOSM)
for variable depth Gouin et al. (2016) for wave evolution and Variational Boussinesq model (VBM)
Lawrence et al. (2018) for velocity field calculation.
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Numerical model



• High Order Spectral Method for wave evolution over variable 
depth

M. Gouin, G. Ducrozet, and P. Ferrant. Development and validation of a non-linear spectral model 
for water waves over variable depth. European Journal of Mechanics-B/Fluids, 57:115-128, 2016.

M. Gouin G. Ducrozet,and P. Ferrant. Propagation of 3D nonlinear waves over an elliptical mound 
with a high-order spectral method. European Journal of Mechanics-B/Fluids,63:9-24, 2017.

• Variational Boussinesq model for kinematics calculation
G. Klopman, E. van Groesen and M. W. Dingemans. A variational approach to boussinesq modeling 
of fully non-linear water waves. J. Fluid Mech, 657:36-63, 2010.

C. Lawrence, D. Adytia and E. van Groesen. Variational Boussinesq model for strongly nonlinear 
dispersive waves. Wave Motion, 76:78-102, 2018.



High Order Spectral Method

Dynamic equations

Bottom boundary condition 



High Order Spectral Method

The velocity potential is truncated as power series



Variational Boussinesq model (VBM)

Φ 𝑥, 𝑧 ≈ 𝜙 𝑥 + ෍
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Solve the Laplace via Dirichlet principle (minimize the kinetic energy)
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Statistics of irregular waves propagating 
over a shoal



Simulation setup 
Incoming waves with JONSWAP spectrum: Hs=2.5cm, Tp=1.1s, 𝛾 =3.3

100 different realizations with time series of 200Tp are used to calculated statistical quantities (kurtosis 
and skewness)

The bathymetry is the same with laboratory experiments.

Damping 
zones

Damping 
zones

wavemaker

𝑥1 = 30 m
𝑥2 = 31.6 m
𝑥3 = 33.2 m
𝑥4 = 34.8 m

ℎ1 = 0.53 m
ℎ2 = 0.11 m



Simulation

Experiment

Surface elevation

u at z = -0.04 m

u at z = -0.06 m

u at z = -0.08 m

u at z=-0.048 m

Surface elevation



Effect of 𝐻𝑠

Incoming waves with JONSWAP spectrum: Hs=2, 2.5, 3.0 cm, Tp=1.1s, 𝛾 =3.3

Damping 
zones

Damping 
zones

wavemaker

𝑥1 = 30 m
𝑥2 = 31.6 m
𝑥3 = 33.2 m
𝑥4 = 34.8 m

ℎ1 = 0.53 m
ℎ2 = 0.11 m



Surface elevation

u at z = -0.04 m

u at z = -0.06 m

u at z = -0.08 m

𝐻𝑠 = 2cm

𝐻𝑠 = 2.5cm

𝐻𝑠 = 3cm



Effect of 𝑇𝑝

Incoming waves with JONSWAP spectrum: Hs=2.5 cm, Tp=1,1.1,1.2 s, 𝛾 =3.3

Damping 
zones

Damping 
zones

wavemaker

𝑥1 = 30 m
𝑥2 = 31.6 m
𝑥3 = 33.2 m
𝑥4 = 34.8 m

ℎ1 = 0.53 m
ℎ2 = 0.11 m



Surface elevation

u at z = -0.04 m

u at z = -0.06 m

u at z = -0.08 m

𝑇𝑝 = 1.1𝑠

𝑇𝑝 = 1.0𝑠

𝑇𝑝 = 1.2𝑠



Effects of upslope
Incoming waves with JONSWAP spectrum: Hs=2.5cm, Tp=1.1s, 𝛾 =3.3

Three different upslope were investigated with numerical simulations

Damping 
zones

Damping 
zones

wavemaker

𝑥1 = 30 m
𝑥2 = 31.6, 35, 40 m
𝑥3 = 100 m
𝑥4 = 110 m

ℎ1 = 0.53 m
ℎ2 = 0.11 m



Surface elevation

u at z = -0.04 m

u at z = -0.06 m

u at z = -0.08 m



Effects of downslope
Incoming waves with JONSWAP spectrum: Hs=2.5cm, Tp=1.1s, 𝛾 =3.3

Three different downslope were investigated with numerical simulations

Damping 
zones

Damping 
zones

wavemaker

𝑥1 = 30 m
𝑥2 = 31.6 m
𝑥3 = 33.2 m
𝑥4 = 34.8, 36.2, 38.2 m

ℎ1 = 0.53 m
ℎ2 = 0.11 m



Surface elevation

u at z = -0.04 m

u at z = -0.06 m

u at z = -0.08 m



Conclusion

• For the first time according to the authors knowledge, the numerical simulations 
are able to reproduce statistical properties of wave kinematics of irregular waves 
propagating over a shoal as in the laboratory experiments [1] .

• For irregular waves propagating over a shoal in sufficiently shallow water, the 
surface elevation has local maximum of skewness and kurtosis near the edge of 
the upslope on shallower side and a local minimum of skewness on the 
downslope of the shoal. Meanwhile, the horizontal velocity has local maximum 
on downslope of the shoal and local minimum at the same location with local 
maximum of kurtosis of surface elevation.

• The local effects on kurtosis and skewness may disappear if the length of slope is 
sufficiently long.
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