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Abstract

The dynamic kurtosis (i.e., produced by the free wave component) is shown to
contribute essentially to the abnormally large values of the full kurtosis of the surface
displacement, according to the direct numerical simulations of realistic directional sea
waves within the HOSM framework. In this situation the free wave stochastic
dynamics is strongly non-Gaussian, and the kinetic approach is inapplicable. Traces of
coherent wave patterns are found in the Fourier transform of the directional irregular
sea waves. They strongly violate the classic dispersion relation and hence lead to a
greater spread of the actual wave frequencies for given wavenumbers.
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Rogue wave problem
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Large BFI corresponds to high probability of large waves

[Kharif, Pelinovsky, Slunyaev, 2009]



Rogue wave problem
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Since the 1990s, the modulational instability has commonly been used to explain the occurrence of
rogue waves that appear from nowhere in the open ocean. However, the importance of this instability
n the context of ocean waves is not well established. This mechanism has been successfully studied in
sthematical studies, but there is no consensus on what actually takes
e question the oceanic relevance of this paradigm. In particular, we
n various European locations with various tools, and find that the main
aves is the constructive interference of elementary waves enhanced
ities and not the modulational instability. This implies that roegue
nces of weakly nonlinear random seas.
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ABSTRACT

ty control, and analysis of single-point field measurements from
5. In total, the guality-controlled database contains 122 million
aves. Geographically, the majority of the field measurements were
tary data from the Gulf of Mexico, the South China Sea, and the
nt wave height ranged from 0.12 to 15.4 m, the peak period ranged
was 185 m, and the maximum recorded wave height was 25.5m.
This paper will describe the offshore installations, instrumentation, and the strict quality control procedure
employed to ensure a reliable dataset. An examination of sea state parameters, environmental conditions, and
local characteristics is performed to gain an insight into the behavior of rogue waves. Evidence is provided to
demonstrate that rogue waves are not governed by sea state parameters. Rather, the results are consistent
with rogue waves being merely extraordinary and rare events of the normal population caused by dispersive
focusing.




Numerical simulations
of irregular sea waves



Nonlinear simple deep-water wave

free wave bound / phase-locked / slave waves
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Narrow-banded weakly nonlinear waves

Statistical moments for the suiace diSpIacement
Fourth statistical moment, the kurtosis May be O(1) <774>
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A, =3+ 245° +—BFI2 < 2>

/ \ [Mori & Janssen, JPO2006]

The Gaussian statistics Bound wave contribution Dynamic part: Benjamin-Feir
(wave unsinusoidality) instability (quasi-resonant
interactions) [Onorato et al, 2001]

Exceedance probability for wave heights H

5 The probability of large waves
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Large kurtosis is a sighature
( B ) of dangerous wave conditions
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[Mori & Janssen, JPO2016] 7



Dynamical spectral theory
Hamiltonian weakly nenlinealn Zakharey:Sieguaion!

Non-resonant terms are eliminated with the help of the canonical transformation

of variables ( (7, ®) — a(k, t) - b(k, t)).

Higher than 4-wave resonances are not resolved (wave slopes should be mild).
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Kinetic spectral theory
ON .
ot

O Vr E:Sm(NE)+Sm(NE)+SdiSS(NE)
—— -

group velocity

N v J  nonlinear forcing  dissipative
advection effects terms
. E.
wave action N, = aﬁ) Cannot describe
effects of coherent
dispersion relation a)(IZ) wave dynamics
St [M] = /k . | Tiks ko ksl {N2N3(N + Ni) — NNi(N2 + N3)} - ~ Boltzmann
15‘ 2.‘- 3 . . .
x5(k + k1 — ko — k3)d(w + w1 — wp — ws)dkidkadks collision integral
. N, = (b7h, )
phase averaging k k ™k

[Hasselmann, JFM1962] assuming random incoherent phases ?



Kinetic spectral theory

Phase-averaged eguations
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Conservative equations in what follows (no wind, no dissipation)
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Wave evolution within different frameworks

Evolution of the total KUurtesis
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Spectral evolution of weakly nonlinear random <774>
waves: kinetic description versus direct A = —13
numerical simulations 4 <77 2 >2
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The method of wave decomposition
into free wave and bound wave constituents



Direct numerical sims + Triple Fourier transform

Deep-water gravity waves
obeying the JONSWAP

spectrum are simulated by

the High Order Spectral
Method (HOSM, the
potential Euler equations
with truncated order of
nonlinearity).

No winds.
Almost no dissipation.

A sequence of snapshots
of the water surface
represents a real-valued
field in a space-time
domain, periodic along
the two horizontal axes.
50 x 50 dominant wave
lengths x 25 periods.
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Fourier domain

We plot contours for the normalized Fourier amplitudes by different colors
(0 ... =10 Db)
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Fourier domain

We plot contours for the normalized Fourier amplitudes by different colors

(O ... —20 Db)
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Fourier domain

We plot contours for the normalized Fourier amplitudes by different colors
(0 ... =30 Db)
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Fourier domain
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Fourier domain

Weakly nonlinear narrow-0anced ety

Nonlinear harmonics:
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e The free wave component is reconstructed via inverse triple Fourier transform

e Spectral filters can select wanted nonlinear harmonics



Total and ‘dynamic’ statistical moments

Two classes of sea states
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Total and ‘dynamic’ statistical moments

Two classes of sea states
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Evidence of coherent wave patterns

Wavenumber-frequency
Fourier amplitudes along 2°
the wave direction 8~ 14° ,

Manifestation of coherent
wave patterns, which 1
violate the dispersion law

Wavenumber-frequency
Fourier amplitudes
integrated along all wave
directions

The coherent patterns
lead to the spread of
energy in the Fourier

domain
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Conclusions

The method to calculate the free Wave CompoiERSTOHINTEN VEN 2lel

IS suggested
e —
The strongly non-Gaussian dynamics GiithENEECAaVEICOINPORENT

IS shown to occur. under. realistic: Sea coNdIons

It occurs under the conditions faverab]efoRtheB En| i =EITAN SN
(iIntense waves with narrew Spectium)

It cannot be simulated by phase-averaginGNnGueElS

The evidence of generation ofinenlineaConerenpalieriSunIECHol
Irregular sea surface waves IS presented

The new effect leading to the Spreadioithelrequl ardWVaVENH ISPEISIDIINS
shown
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